首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.  相似文献   

2.
CBM and CO2-ECBM related sorption processes in coal: A review   总被引:1,自引:0,他引:1  
This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams.Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters.Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach.In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank.Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes.This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.  相似文献   

3.
Interpretation of carbon dioxide diffusion behavior in coals   总被引:3,自引:1,他引:3  
Storage of carbon dioxide in geological formations is for many countries one of the options to reduce greenhouse gas emissions and thus to satisfy the Kyoto agreements. The CO2 storage in unminable coal seams has the advantage that it stores CO2 emissions from industrial processes and can be used to enhance coalbed methane recovery (CO2-ECBM). For this purpose, the storage capacity of coal is an important reservoir parameter. While the amount of CO2 sorption data on various natural coals has increased in recent years, only few measurements have been performed to estimate the rate of CO2 sorption under reservoir conditions. An understanding of gas transport is crucial for processes associated with CO2 injection, storage and enhanced coalbed methane (ECBM) production.A volumetric experimental set-up has been used to determine the rate of sorption of carbon dioxide in coal particles at various pressures and various grain size fractions. The pressure history during each pressure step was measured. The measurements are interpreted in terms of temperature relaxation and transport/sorption processes within the coal particles. The characteristic times of sorption increase with increasing pressure. No clear dependence of the characteristic time with respect to the particle size was found. At low pressures (below 1 MPa) fast gas diffusion is the prevailing mechanism for sorption, whereas at higher pressures, the slow diffusion process controls the gas uptake by the coal.  相似文献   

4.
The measurement of coal porosity with different gases   总被引:1,自引:0,他引:1  
Sorption processes can be used to study different characteristics of coal properties, such as gas content (coalbed methane potential of a deposit), gas diffusion, porosity, internal surface area, etc. Coal microstructure (porosity system) is relevant for gas flow behaviour in coal and, consequently, directly influences gas recovery from the coalbed.This paper addresses the determination of coal porosity (namely micro- and macroporosity) in relation to the molecular size of different gases. Experiments entailed a sorption process, which includes the direct method of determining the “void volume” of samples using different gases (helium, nitrogen, carbon dioxide, and methane). Because gas behaviour depends on pressure and temperature conditions, it is critical, in each case, to know the gas characteristics, especially the compressibility factor.The experimental conditions of the sorption process were as follows: temperature in the bath 35 °C; sample with moisture equal to or greater than the moisture-holding capacity (MHC), particle size of sample less than 212 μm, and mass ca. 100 g.The present investigation was designed to confirm that when performing measurements of the coal void volume with helium and nitrogen, there are only small and insignificant changes in the volume determinations. Inducing great shrinkage and swelling effects in the coal molecular structure, carbon dioxide leads to “abnormal” negative values in coal void volume calculations, since the rate of sorbed and free gas is very high. In fact, when in contact with the coal structure, carbon dioxide is so strongly retained that the sorbed gas volume is much higher than the free gas volume. However, shrinkage and swelling effects in coal structure induced by carbon dioxide are fully reversible. Methane also induces shrinkage and swelling when in contact with coal molecular structure, but these effects, although smaller than those induced by carbon dioxide, are irreversible and increase the coal volume.  相似文献   

5.
Gas adsorption isotherms of Akabira coals were established for pure carbon dioxide (CO2), methane (CH4), and nitrogen (N2). Experimental data fit well into the Langmuir model. The ratio of sorption capacity of CO2, CH4, and N2 is 8.5:3.5:1 at a lower pressure (1.2 MPa) regime and becomes 5.5:2:1 when gas pressure increases to 6.0 MPa. The difference in sorption capacity of these three gases is explained by differences in the density of the three gases with increasing pressure. A coal–methane system partially saturated with CH4 at 2.4 MPa adsorption pressure was experimentally studied. Desorption behavior of CH4 by injecting pure CO2 (at 3.0, 4.0, 5.0, and 6.0 MPa), and by injecting the CO2–N2 mixture and pure N2 (at 3.0 and 6.0 MPa) were evaluated. Results indicate that the preferential sorption property of coal for CO2 is significantly higher than that for CH4 or N2. CO2 injection can displace almost all of the CH4 adsorbed on coal. When modeling the CH4–CO2 binary and CH2–CO2–N2 ternary adsorption system by using the extended Langmuir (EL) equation, the EL model always over-predicted the sorbed CO2 value with a lower error, while under-predicting the sorbed CH4 with a higher error. A part of CO2 may dissolve into the solid organic structure of coal, besides its competitive adsorption with other gases. According to this explanation, the EL coefficients of CO2 in EL equation were revised. The revised EL model proved to be very accurate in predicting sorbed ratio of multi-component gases on coals.  相似文献   

6.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

7.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

8.
Modelling the sorption properties of coals for carbon dioxide under supercritical conditions is necessary for accurate prediction of the sequestering ability of coals in seams. We present recent data for sorption curves of three dry Argonne Premium coals, for carbon dioxide, methane and nitrogen at two different temperatures at pressures up to 15 MPa. The sorption capacity of coals tends to decrease with increasing temperature. An investigation into literature values for sorption of nitrogen and methane by charcoal also show sorption capacities that decrease dramatically with increasing temperature. This is inconsistent with expectations from Langmuir models of coal sorption, which predict a sorption capacity that is independent of temperature. We have successfully fitted the isotherms using a modified Dubinin–Radushkevich equation that uses gas density rather than pressure. A simple pore-filling model that assumes there is a maximum pore width that can be filled in supercritical conditions and that this maximum pore width decreases with increasing temperature, can explain this temperature dependence of sorption capacity. It can also explain why different supercritical gases give apparently different surface sorption capacities on the same material. The calculated heat of sorption for these gases on these coals is similar to those found for these gases on activated carbon.  相似文献   

9.
There is still no clear understanding of the specific interactions between coal and gas molecules. In this context sorption–desorption studies of methane and carbon dioxide, both in a single gas environment and gas mixtures, are of fundamental interest. This paper presents the results of unique simultaneous measurements of sorption kinetics, volumetric strain and acoustic emission (AE) on three tetragonal coal samples subjected to sorption of carbon dioxide and methane mixtures. The coal was a high volatile bituminous C coal taken from the Budryk mine in the Upper Silesia Basin, Poland. Three different gas mixtures were used in the sorption tests, with dominant CO2, with dominant CH4 and a 50/50 mixture.The experimental set-up was designed specially for this study. It consisted of three individual units working together: (i) a unit for gas sorption experiments using a volumetric method, (ii) an AE apparatus for detecting, recording and analysing AE, and (iii) a strain meter for measuring strains induced in the coal sample by gas sorption/desorption. All measurements were computer aided.The experiments indicated that the coal tested showed preferential sorption of CH4 at 2.6 MPa pressure and exhibited comparable affinities for CH4 and CO2 at higher pressures (4.0 MPa). The results of chromatographic analysis of the gas released on desorption suggested that the desorption of methane from the coal was favoured. The relationship between the volumetric strain and the amount of sorbed gas was found to be non-linear. These results were contrary to common opinions on the coal behaviour. Furthermore, it appeared that the swelling/shrinkage of coal was clearly influenced by the network of fractures. Besides, the AE and strain characteristics suggested common sources of sorption induced AE and strain.The present results may have implications for the sequestration of carbon dioxide in coal seams and enhanced coalbed methane recovery (ECBM).  相似文献   

10.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   

11.
It is generally accepted that typical coalbed gases (methane and carbon dioxide) are sorbed (both adsorbed and absorbed) in the coal matrix causing it to swell and resulting in local stress and strain variations in a coalbed confined under overburden pressure. The swelling, interactions of gases within the coal matrix and the resultant changes in the permeability, sorption, gas flow mechanics in the reservoir, and stress state of the coal can impact a number of reservoir-related factors. These include effective production of coalbed methane, degasification of future mining areas by drilling horizontal and vertical degasification wells, injection of CO2 as an enhanced coalbed methane recovery technique, and concurrent CO2 sequestration. Such information can also provide an understanding of the mechanisms behind gas outbursts in underground coal mines.The spatio-temporal volumetric strains in a consolidated Pittsburgh seam coal sample were evaluated while both confining pressure and carbon dioxide (CO2) pore pressure were increased to keep a constant positive effective stress on the sample. The changes internal to the sample were evaluated by maps of density and atomic number determined by dual-energy X-ray computed tomography (X-ray CT). Early-time images, as soon as CO2 was introduced, were also used to calculate the macroporosity in the coal sample. Scanning electron microscopy (SEM) and photographic images of the polished section of the coal sample at X-ray CT image location were used to identify the microlithotypes and microstructures.The CO2 sorption-associated swelling and volumetric strains in consolidated coal under constant effective stress are heterogeneous processes depending on the lithotypes present. In the time scale of the experiment, vitrite showed the highest degree of swelling due to dissolution of CO2, while the clay (kaolinite) and inertite region was compressed in response. The volumetric strains associated with swelling and compression were between ± 15% depending on the location. Although the effective stress on the sample was constant, it varied within the sample as a result of the internal stresses created by gas sorption-related structural changes. SEM images and porosity calculations revealed that the kaolinite and inertite bearing layer was highly porous, which enabled the fastest CO2 uptake and the highest degree of compression.  相似文献   

12.
Characterization of coal reservoirs and determination of in-situ physical coal properties related to transport mechanism are complicated due to having lack of standard procedures in the literature. By considering these difficulties, a new approach has been developed proposing the usage of relationships between coal rank and physical coal properties. In this study, effects of shrinkage and swelling (SS) on total methane recovery at CO2 breakthrough (TMRB), which includes ten-year primary methane recovery and succeeding enhanced coalbed methane (ECBM) recovery up to CO2 breakthrough, and CO2 sequestration have been investigated by using rank-dependent coal properties. In addition to coal rank, different coal reservoir types, molar compositions of injected fluid, and parameters within the extended Palmer & Mansoori (P&M) permeability model were considered. As a result of this study, shrinkage and swelling lead to an increase in TMRB. Moreover, swelling increased CO2 breakthrough time and decreased displacement ratio and CO2 storage for all ranks of coal. Low-rank coals are affected more negatively than high-rank coals by swelling. Furthermore, it was realized that dry coal reservoirs are more influenced by swelling than others and saturated wet coals are more suitable for eliminating the negative effects of CO2 injection. In addition, it was understood that it is possible to reduce swelling effect of CO2 on cleat permeability by mixing it with N2 before injection. However, an economical optimization is required for the selection of proper gas mixture. Finally, it is concluded from sensitivity analysis that elastic modulus is the most important parameter, except the initial cleat porosity, controlling SS in the extended P&M model by highly affecting TMRB.  相似文献   

13.
Injection of carbon dioxide into coal seams is considered to be a potential method for its sequestration away from the atmosphere. However, water present in coals may retard injection: especially if carbon dioxide does not wet the coal as well as water. Thus contact angles in the coal-water-CO2 system were measured using CO2 bubbles in water/coal systems at 40 °C and pressures up to 15 MPa using five bituminous coals. At low pressures, in this CO2/water/coal system, receding contact angles for the coals ranged between 80° to 100°; except for one coal that had both high ash yield and low rank, with a contact angle of 115°, indicating that it was hydrophilic. With increasing pressure, the receding contact angles for the different coals decreased, indicating that they became more CO2-wetting. The relationship between contact angle and pressure was approximately linear. For low ash or high rank coals, at high pressure the contact angle was reduced to 30-50°, indicating the coals became strongly CO2-wetting; that is CO2 fluids will spontaneously penetrate these wet coals. In the case of the coal that was both high ash and hydrophilic, the contact angle did not drop to 90° even at the highest pressures used. These results suggest that CO2 will not be efficiently adsorbed by all wet coals equally well, even at high pressure. It was found that at high pressures (> 2 MPa) the rate of penetration of carbon dioxide into the coals increased rapidly with decreasing contact angle, independently of pressure. Injecting CO2 into wet coals that have both low rank and high ash will not trap CO2 as well as injecting it into high rank or low ash coals.  相似文献   

14.
We report laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5 cm diameter, 2.5-5 cm long cylindrical samples at confining stresses of 6 to 12 MPa. Permeability and sorption characteristics are measured by pulse transient methods, together with axial and volumetric strains for both inert (helium (He)) and strongly adsorbing (methane (CH4) and carbon dioxide (CO2)) gases. To explore the interaction of swelling and fracture geometry we measure the evolution of mechanical and transport characteristics for three separate geometries — sample A containing multiple small embedded fractures, sample B containing a single longitudinal through-going fracture and sample C containing a single radial through-going fracture. Experiments are conducted at constant total stress and with varied pore pressure — increases in pore pressure represent concomitant (but not necessarily equivalent) decreases in effective stress. For the samples with embedded fractures (A and C) the permeability first decreases with an increase in pressure (due to swelling and fracture constraint) and then increases near-linearly (due to the over-riding influence of effective stresses). Conversely, this turnaround in permeability from decreasing to increasing with increasing pore pressure is absent in the discretely fractured sample (B) — the influence of the constraint of the connecting fracture bridges in limiting fracture deformation is importantly absent as supported by theoretical considerations. Under water saturated conditions, the initial permeabilities to all gases are nearly two orders of magnitude lower than for dry coal and permeabilities increase with increasing pore pressure for all samples and at all gas pressures. We also find that the sorption capacities and swelling strains are significantly reduced for water saturated samples — maybe identifying the lack of swelling as the primary reason for the lack of permeability decrease. Finally, we report the weakening effects of gas sorption on the strength of coal samples by loading the cores to failure. Results surprisingly show that the strength of the intact coal (sample A) is smaller than that of the axially fractured coal (sample B) due to the extended duration of exposure to CH4 and CO2. Average post-failure particle size for the weakest intact sample (A) is found to be three times larger than that of the sample B, based on the sieve analyses from the samples after failure. We observe that fracture network geometry and saturation state exert important influences on the permeability evolution and strength of coal under in situ conditions.  相似文献   

15.
The paper reports the results of experiments concerning the sorption/desorption processes, observed under laboratory conditions, in two types of coal extracted from operational coal-mines in Poland, using CH4 and CO2 to observe their relative inter-reaction with the coal samples when introduced in varying proportions and conditions. Numerous studies concerning the sorption/desorption phenomena have described the operational mechanisms and the relationship of mine gases to the organically-created coal-body in mines. The differences in the behaviour of certain gases is twofold: firstly the essentially different characteristics of CO2 and CH4, and secondly the structure of the coal-bed itself: its degree of metamorphism and content of macerals. From the results yielded, it was observed that the divergence of the isotherms of sorption of CH4 and other gases in comparison with the isotherms of sorption of CO2 and a CO2/CH4 mixture differed and that the curve on the sorption isotherm was more clearly distinct after the introduction of CO2 molecules to the system: coal with a higher degree of metamorphism—CH4, which is closely related to the rigidity of the structure according to the level of metamorphism. Since coals with higher carbon content exhibit lower molecular bonding than low-carbonised coals, the characteristic feature of the bonds in the first case is their mobility. Knowledge of the physical and chemical properties of hard coals, as well as their interaction with mining gases, is of great use in solving problems concerned with the extraction of methane from mines or its storage in goafs.  相似文献   

16.
Complete sorption isotherm characteristics of methane and CO2 were studied on fourteen sub-bituminous to high-volatile bituminous Indian Gondwana coals. The mean vitrinite reflectance values of the coal samples are within the range of 0.64% to 1.30% with varying maceral composition. All isotherms were conducted at 30 °C on dry, powdered coal samples up to a maximum experimental pressure of ~ 7.8 MPa and 5.8 MPa for methane and CO2, respectively.The nature of the isotherms varied widely within the experimental pressure range with some of the samples remained under-saturated while the others attained saturation. The CO2 to methane adsorption ratios decreased with the increase in experimental pressure and the overall variation was between 4:1 and 1.5:1 for most of the coals. For both methane and CO2, the lower-ranked coal samples generally exhibited higher sorption affinity compared to the higher-ranked coals. However, sorption capacity indicates a U-shaped trend with rank. Significant hysteresis was observed between the ad/desorption isotherms for CO2. However, with methane, hysteresis was either absent or insignificant. It was also observed that the coal maceral compositions had a significant impact on the sorption capacities for both methane and CO2. Coals with higher vitrinite contents showed higher capacities while internite content indicated a negative impact on the sorption capacity.  相似文献   

17.
Published data suggest that soil gas helium concentrations of 5.28–5.34 ppm v/v over uranium and hydrocarbon deposits are significantly anomalous compared to the ambient atmospheric background of 5.24 ppm. However, analyses for helium by mass spectrometers having constant-pressure inlet systems, from which most of these data are derived, are subject to errors of equivalent magnitude. These errors arise when the major component composition of unknown and standard gases differ, for the different gases have different flow rates through the inlet system — relative rates being O2 < dry air < water-saturated air < N2 < CO2 CH4. Soil gas compositions can vary greatly and, compared to a dry air standard, the flow-rate of a water-saturated gas containing 10% biogenic CO2 will increase, enhancing the apparent He content to 5.33 ppm. Accurate helium analyses can be achieved by using a constant-volume inlet and integrating the detector response over the period of the samples' passage through the detector.  相似文献   

18.
CO2, CH4, and N2 adsorption and gas-induced swelling were quantified for block Blind Canyon, Pittsburgh #8 and Pocahontas Argonne Premium coals that were dried and structurally relaxed at 75 °C in vacuum. Strain measurements were made perpendicular and parallel to the bedding plane on ~ 7 × 7 × 7 mm3 coal blocks and gravimetric sorption measurements were obtained simultaneously on companion coal blocks exposed to the same gaseous environment. The adsorption amount and strain were determined after equilibration at P   1.8 MPa. There is a strong non-linear correlation between strain and the quantity of gas adsorbed and the results for all gases and coals studied follow a common pattern. The dependence of the coal matrix shrinkage/swelling coefficient (Cgc) on the type and quantity of gas adsorbed is seen by plotting the ratio between the strain and the adsorbate concentration against the adsorbate concentration. In general, Cgc increases with increasing adsorbate concentration over the range of ~ 0.1 to 1.4 mmol/g. Results from the dried block coals are compared to CO2 experiments using native coals with an inherent level of moisture as received. The amount of CO2 adsorbed using native coals (assuming no displacement of H2O by CO2) is significantly less than the dried coals. The gas-induced strain (S) and adsorption amount (M) were measured as a function of time following step changes in CO2, CH4, and N2 pressure from vacuum to 1.8 MPa. An empirical diffusion equation was applied to the kinetic data to obtain the exponent (n) for time dependence for each experiment. The data for all coals were pooled and the exponent (n) evaluated using an ANOVA statistical analysis method. Values for (n) near 0.5 were found to be independent on the coal, the gas or type of measurement (e.g., parallel strain, perpendicular strain, and gas uptake). These data support the use of a Fickian diffusion model framework for kinetic analysis. The kinetic constant k was determined using a unipore diffusion model for each experiment and the data were pooled for ANOVA analysis. For dry coal, statistically significant differences for k were found for the gases (CO2 > N2 > CH4) and coals (Pocahontas >Blind Canyon > Pittsburgh #8) but not for the method of the kinetic measurement (e.g., strain or gas uptake). For Blind Canyon and Pittsburgh #8 coal, the rate of CO2 adsorption and gas-induced strain for dry coal was significantly greater than that of the corresponding native coal. For Pocahontas coal the rates of CO2 adsorption and gas-induced strain for dry and native coal were indistinguishable and may be related to its low native moisture and minimal amount of created porosity upon drying.  相似文献   

19.
Numerical modelling of the processes of CO2 storage in coal and enhanced coalbed methane (ECBM) production requires information on the kinetics of adsorption and desorption processes. In order to address this issue, the sorption kinetics of CO2 and CH4 were studied on a high volatile bituminous Pennsylvanian (Upper Carboniferous) coal (VRr=0.68%) from the Upper Silesian Basin of Poland in the dry and moisture-equilibrated states. The experiments were conducted on six different grain size fractions, ranging from <0.063 to 3 mm at temperatures of 45 and 32 °C, using a volumetric experimental setup. CO2 sorption was consistently faster than CH4 sorption under all experimental conditions. For moist coals, sorption rates of both gases were reduced by a factor of more than 2 with respect to dry coals and the sorption rate was found to be positively correlated with temperature. Generally, adsorption rates decreased with increasing grain size for all experimental conditions.Based on the experimental results, simple bidisperse modelling approaches are proposed for the sorption kinetics of CO2 and CH4 that may be readily implemented into reservoir simulators. These approaches consider the combination of two first-order reactions and provide, in contrast to the unipore model, a perfect fit of the experimental pressure decay curves. The results of this modeling approach show that the experimental data can be interpreted in terms of a fast and a slow sorption process. Half-life sorption times as well as the percentage of sorption capacity attributed to each of the two individual steps have been calculated.Further, it was shown that an upscaling of the experimental and modelling results for CO2 and CH4 can be achieved by performing experiments on different grain size fractions under the same experimental conditions.In addition to the sorption kinetics, sorption isotherms of the samples with different grain size fractions have been related to the variations in ash and maceral composition of the different grain size fractions.  相似文献   

20.
Coal swelling/shrinkage during gas adsorption/desorption is a well-known phenomenon. For some coals the swelling/shrinkage shows strong anisotropy, with more swelling in the direction perpendicular to the bedding than that parallel to the bedding. Experimental measurements performed in this work on an Australian coal found strong anisotropic swelling behaviour in gases including nitrogen, methane and carbon dioxide, with swelling in the direction perpendicular to the bedding almost double that parallel to the bedding. It is proposed here that this anisotropy is caused by anisotropy in the coal's mechanical properties and matrix structure. The Pan and Connell coal swelling model, which applies an energy balance approach where the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid, is further developed to describe the anisotropic swelling behaviour incorporating coal property and structure anisotropy. The developed anisotropic swelling model is able to accurately describe the experimental data mentioned above, with one set of parameters to describe the coal's properties and matrix structure and three gas adsorption isotherms. This developed model is also applied to describe anisotropic swelling measurements from the literature where the model was found to provide excellent agreement with the measurement. The anisotropic coal swelling model is also applied to an anisotropic permeability model to describe permeability behaviour for primary and enhanced coalbed methane recovery. It was found that the permeability calculation applying anisotropic coal swelling differs significantly to the permeability calculated using isotropic volumetric coal swelling strain. This demonstrates that for coals with strong anisotropic swelling, anisotropic swelling and permeability models should be applied to more accurately describe coal permeability behaviour for both primary and enhanced coalbed methane recovery processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号