首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many geological and geophysical investigations, particularly the Deep Sea Drilling Project, have shown that convergent plate margins are highly diverse features. For example, at some sites of subduction, such as the Lesser Antilles, the bedded sediment atop the incoming oceanic plate is extensively offscraped, whereas at others, such as Mariana, not only is the incoming sediment completely subducted beneath crystalline rock but portions of the overriding plate are undergoing subduction erosion. Earthquakes indicate wide variations in stress distribution within and between sites of plate convergence. Many ancient accretionary complexes include tracts of intensely-deformed subduction melange that contain blocks of mafic greenstones. Some contain bodies of thoroughly recrystallized blueschist that were uplifted from depths of 20 to 30 km. A comprehensive model for convergent plate margins must explain these and numerous other observations. Although the still widely cited imbricatethrust model for prism accretion qualitatively explains some observations at subduction zones, it does not account for many others, such as deep sediment subduction and subduction erosion. The subduction-channel model postulates essentially the same basic mechanics for all convergent plate margins that have attained a quasi-steady state (typically reached after about 20 Ma of subduction at speeds of 10 to 20 km Ma?1). It assumes that the subducting sediment deforms approximately as a viscous material once it is dragged into a relatively thin shear zone, or subduction channel, between the downgoing plate and the overriding one. It predicts the overall movement patterns of the sediment deforming within the channel and near its inlet, accounts for most of the observed features at convergent plate margins, and quantifies the processes of sediment subduction, offscraping, and underplating, and the formation of subduction melange. The predicted variations in tectonic behavior depend upon such site-specific variables as the speed of subduction, the supply of sediment, the geometry of the descending plate, and the topography and structure of the overriding block.  相似文献   

2.
Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.  相似文献   

3.
The earth's largest positive geoid height anomalies are associated with subduction zones and hotspots. Although the correlation with subduction has been noted for many years, the correlation with hotspots is fully evident only when the subduction-related geoid highs are removed from the observed field. Using the assumption that subducted lithospheric slabs are uncompensated and are thermally re-equilibrated with the asthenosphere at the maximum depth of earthquakes, the expected geoid anomaly over subduction zones is calculated. This field provides a satis-factory fit to the observed circum-Pacific high. Subtraction of this predicted anomaly leaves a residual field which is correlated, at greater than the 99% confidence level, with the distribution of hotspots. Broad residual geoid highs occur over the central Pacific and the Africa/eastern Atlantic regions, the same areas where the hotspots are concentrated. The mass anomalies associated with hotspots and subducted slabs apparently control the location of the earth's spin axis.  相似文献   

4.
琼北火山群形成的动力学机制及地震现象的新认识   总被引:4,自引:1,他引:3       下载免费PDF全文
分析世界火山分布图发现琼北火山群分布在一南北向的火山带上,应用有限元方法模拟计算了双俯冲作用下海南岛所在雷琼\|越东火山带的形成机制,结合海南岛精确定位的地震数据和形变观测结果,认为琼北地区可能存在岩墙侵入或张性断裂膨胀,并根据地震数据模拟分析了岩墙侵入对区域应力场及形变的影响.琼北地区精确地震(2000~2006)定位结果表明地震主要集中在一个垂直面上,并且地震带两端有分叉现象.通过地震时空分布特征推测存在岩墙侵入,并通过数值模拟很好地解释了琼北地区地震的分布特征(狗骨头状)以及地表垂向形变东升西降的特征.  相似文献   

5.
《Journal of Geodynamics》2003,35(4-5):471-481
The southern Kyusyu district is one of the most characteristic subduction zones in Japan. In this region, large earthquakes occurred sequentially, although earthquake mechanisms are different and the distance between earthquakes is far. We investigate strain propagation caused by a strain fluctuation related to subducting plate velocity. For this purpose, we used the data obtained from extensometers installed in an observation network at Kyusyu district and applied the cross-correlation function. If the strain associated with the subduction propagates in the crust, it is expected that the correlation around arrival of propagating signal varies from steady state. The results suggest existence of strain propagation in the overlying crust. Its velocity is estimated to be about 90–140 km/year with a direction from the subduction zone to inland.  相似文献   

6.
Geodetically-detected episodes of slow slip appear in several subduction zones to be accompanied by bursts of low-frequency coherent noise known as seismic tremor, but whether a single physical process governs this association or even whether slow slip is invariably accompanied by tremor remains unresolved. Detailed analysis of broadband seismic data spanning a slow slip episode in the Hikurangi subduction zone, New Zealand, reveals that slow slip was accompanied by distinct reverse-faulting microearthquakes, rather than tremor. The timing, location, and faulting style of these earthquakes are consistent with stress triggering down-dip of the slow slip patch, either on the subduction interface or just below it. These results indicate that tremor is not ubiquitous during subduction zone slow slip, and that slow slip in subduction zone environments is capable of triggering high-frequency earthquakes near the base of the locked subduction thrust. In this and other locations (Hawaii, Boso Peninsula) where slow slip is accompanied by triggered microseismicity, the estimated upper extent of the slow slip is shallower (less than ~ 20 km) than in those locations from which tremor has been reported. This suggests that ambient temperature- or pressure-dependent factors govern the character of the seismic response to slow slip on subduction thrusts and other large faults, with rheological or lithological conditions at shallow depths triggering high-frequency microearthquakes and those at greater depths triggering seismic tremor.  相似文献   

7.
河南信阳古消减杂岩   总被引:4,自引:0,他引:4       下载免费PDF全文
在秦岭构造带东段大别山北麓的河南信阳附近,作者发现了一个古消减带,其中消减杂岩由蛇绿岩:混杂岩及低温高压变质带的岩石组成。推断古板块会聚边缘的构造发育史可以划分为以下三个阶段: Ⅰ、晚元古代(约800—7000百万年前),东秦岭古洋壳向北朝华北古陆之下俯冲,产生了初始的桐柏岛弧及弧后的边缘海。 Ⅱ、元古代末(约700—600百万年前),俯冲带极性反向,边缘海洋壳向南朝桐柏岛弧之下消减,从而产生了信阳消减杂岩。 Ⅲ、早古生代初(约600—500百万年前),边缘海闭合,桐柏岛弧增生于华北古陆的南缘,东秦岭古洋壳沿岛弧之南的一个新贝尼奥夫带再次向北俯冲  相似文献   

8.
本研究基于Global CMT提供的1196个1976年11月—2017年1月MW4.6地震矩心矩张量解,对西北太平洋俯冲带日本本州至中国东北段的应力场进行反演计算,得到了从浅表到深部俯冲带应力状态的完整分布.结果显示:俯冲带浅表陆壳一侧应力场呈现水平挤压、垂向拉伸状态,洋壳一侧的应力状态则相反,即近水平拉张、近垂向压缩.沿着俯冲板片向下,应力主轴逐渐向俯冲板片轮廓靠拢,其中位于双地震层(120km深度附近)之上的部分,主张应力轴沿俯冲板片轮廓展布而又比其更为陡倾;双地震层内的应力模式同典型I型双层地震带内的应力模式一致,即上层沿俯冲板片轮廓压缩、下层沿俯冲板片轮廓拉伸;双地震层之下,应力模式逐步转变为主压应力轴平行于俯冲板片轮廓.通观所研究的整个俯冲系统,水平面内主压和主张应力轴基本保持了与西北太平洋板片俯冲方向上的一致性,同经典俯冲板片的应力导管模型所预言的俯冲带应力模式相符;而主张应力轴在俯冲板片表面之下的中源地震深度范围内转向海沟走向,或许同研究区域横跨日本海沟与千岛海沟结合带,改变的浅部海沟形态致使完整俯冲板片下部产生横向变形有关.  相似文献   

9.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

10.
Late Cenozoic volcanism in Baja California records the effects of cessation of subduction at a previously convergent, plate margin. Prior to 12.5 m.y., when subduction along the margin of Baja ceased, the predominant volcanic activity had a calc-alkaline signature, ranging in composition from basalt to rhyolite. Acidic pyroclastic activity was common, and possibly represented the westermost, distal edge of the Sierra Madre Occidental province. After 12.5 m.y., however, the style and composition of the magmatic products changed dramatically. The dominant rock type within the Jaraguay and San Borja volcanic fields is a magnesian andesite, with up to 8% MgO at 57% SiO2, low Fe/Mg ratios, and high Na/K ratios. These rocks have unusual trace-element characteristics, with high abundances of Sr (up to 3000 ppm), low contents of Rb; K/Rb ratios are very high (usually over 1000, and up to 2500), and Rb/Sr ratios are low (less than 0.01). Furthermore, Lan/Ybn ratios are high, consistent with derivation from a mantle source with fractionated REE patterns. 87Sr/86Sr ratios are less than 0.7048, and usually less than 0.7040, whereas the pre-12.5 m.y. lavas have 87Sr/86Sr ratios between 0.7038 and 0.7063. We have previously termed these rocks bajaites, in order to distinguish them from other magnesian andesites. Bajaites also occur in southernmost Chile and the Aleutian Islands, areas which also have histories of attempted or successful ridge subduction.It is proposed that the bajaite series is produced during the unusual physico-chemical conditions operating during the subduction of young oceanic lithosphere, or subduction of a spreading centre. During normal subduction, the oceanic crust dehydrates, releasing volatiles (water, Rb and other large-ion lithophile elements) into the overlying wedge. Subduction of younger crust will result in a progressive decrease, and eventual cessation of the transfer of volatiles when subduction stops. Thermal rebound of the mantle may cause the slab to melt, perhaps under eclogitestable conditions. The resulting melt will be heavy-REE-depleted, perhaps dacitic, but will otherwise inherit MORB-like Rb/Sr and K/Rb ratios. The ascending melt will react with the mantle to form the source of the bajaitic rocks. Furthermore, any amphibole in the mantle, stabilised during the higher PH2O conditions of earlier subduction, will break down and contribute a high-K/Rb ratio component.The implications of this study are that firstly, the subducted slab does not contribute a highly fractionated REE component in most modern arcs (i.e. the slab does not melt); secondly, Rb has a very short residence time in the mantle, and its abundance in arc rocks is a direct reflection of the input from the dehydrating slab; and thirdly, bajaitelike rocks may provide recognition of attempted or successful ridge subduction in the geologic past.  相似文献   

11.
We have used a coupled thermo-mechanical finite-element (FE) model of crustal deformation driven by mantle/oceanic subduction to demonstrate that the tectonic evolution of the Lachlan Fold Belt (LFB) during the Mid-Palaeozoic (Late Ordovician to Early Carboniferous) can be linked to continuous subduction along a single subduction zone. This contrasts with most models proposed to date which assume that separate subduction zones were active beneath the western, central and eastern sections of the Lachlan Orogen. We demonstrate how the existing data on the structural, volcanic and erosional evolution of the Lachlan Fold Belt can be accounted for by our model. We focus particularly on the timing of fault movement in the various sectors of the orogen. We demonstrate that the presence of the weak basal decollement on which most of the Lachlan Fold Belt is constructed effectively decouples crustal structures from those in the underlying mantle. The patterns of faulting in the upper crust appears therefore to be controlled by lateral strength contrasts inherited from previous orogenic events rather than the location of one or several subduction zones. The model also predicts that the uplift and deep exhumation of the Wagga-Omeo Metamorphic Belt (WOMB) is associated with the advection of this terrane above the subduction point and is the only tectonic event that gives us direct constraints on the location of the subduction zone. We also discuss the implications of our model for the nature of the basement underlying the present-day orogen.  相似文献   

12.
Summary The morphology of the Wadati-Benioff zone in the region of Central America, based on the distribution of 1377 earthquake foci, verified the existence of an intermediate aseismic gap and its relation to active andesitic volcanism, and the non-uniformity of subduction due to the hampering effect of the main structural features of the subducting Cocos plate. Four deep seismically active fracture zones, genetically connected with the process of subduction, and three fracture zones manifesting the possible boundary between the Americas and Caribbean plates were identified in the continental wedge.  相似文献   

13.
马尼拉俯冲带北段增生楔前缘构造变形和精细结构   总被引:1,自引:0,他引:1       下载免费PDF全文
马尼拉俯冲带是南海的东部边界,记录了南海形成演化的关键信息,同时也是地震和海啸多发区域.本文利用过马尼拉俯冲带北段的高分辨率多道地震剖面,分析了研究区内海盆和海沟的沉积特征,精细刻画了区内增生楔前缘的构造变形、结构以及岩浆活动特征.研究区内增生楔下陆坡部分由盲冲断层、构造楔和叠瓦逆冲断层构成,逆冲断层归并于一条位于下中新统的滑脱面上,滑脱面向海方向的展布明显受到增生楔之下埋藏海山和基底隆起的影响;上陆坡的反射特征则因变形强烈和岩浆作用而难以识别;岩浆活动开始于晚中新世末期并持续至第四纪.马尼拉俯冲带北段增生楔的形成时间早于16.5 Ma,并通过前展式逆冲向南海方向扩展;马尼拉俯冲带的初始形成时间可能在晚渐新世,而此时南海海盆扩张仍在持续.南海东北缘19°N-21°N区域为南海北部陆坡向海盆的延伸,高度减薄的陆壳的俯冲造成马尼拉海沟北段几何形态明显地向东凹进.  相似文献   

14.
Flat and steep subduction are end-member modes of oceanic subduction zones with flat subduction occurring at about 10% of the modern convergent margins and mainly around the Pacific. Continental (margin) subduction normally follows oceanic subduction with the remarkable event of formation and exhumation of high- to ultrahigh-pressure (HP–UHP) metamorphic rocks in the continental subduction/collision zones. We used 2D thermo-mechanical numerical models to study the contrasting subduction/collision styles as well as the formation and exhumation of HP–UHP rocks in both flat and steep subduction modes. In the reference flat subduction model, the two plates are highly coupled and only HP metamorphic rocks are formed and exhumed. In contrast, the two plates are less coupled and UHP rocks are formed and exhumed in the reference steep subduction model. In addition, faster convergence of the reference flat subduction model produces extrusion of UHP rocks. Slower convergence of the reference flat subduction model results in two-sided subduction/collision. The higher/lower convergence velocities of the reference steep subduction model can both produce exhumation of UHP rocks. A comparison of our numerical results with the Himalayan collisional belt suggests two possible scenarios: (1) A spatially differential subduction/collision model, which indicates that steep subduction dominates in the western Himalaya, while flat subduction dominates in the extensional central Himalaya; and (2) A temporally differential subduction/collision model, which favors earlier continental plate (flat) subduction with high convergence velocity in the western Himalaya, and later (flat) subduction with relatively low convergence velocity in the central Himalaya.  相似文献   

15.
We use geodynamic models with imposed plate velocities to test the forward-modeled history of subduction based on a particular plate motion model against alternative seismic tomography models. We utilize three alternative published reference frames: a hybrid moving hotspot-palaeomagnetic, a hybrid moving hotspot-true polar wander corrected-palaeomagnetic, and a Subduction Reference Frame, a plate model including longitudinal shifts of subduction zones by matching subduction volumes imaged by P-wave tomography, to assess which model best predicts present day mantle structure compared with seismic tomography and volumetrically derived subduction history. Geodynamic modeling suggests paleo-longitudinal corrections applied to the Subduction Reference Frame result in lower mantle slab material beneath North America and East Asia accumulating up to 10–15° westward of that imaged by tomography, whereas the hybrid models develop material offset by 2–9°. However, the Subduction Reference Frame geodynamic model produces slab material beneath the Tethyan Domain coinciding with slab volumes imaged by tomography, whereas the hybrid reference frame models do not, suggesting regional paleo-longitudinal corrections are required to constrain slab locations. We use our models to test inferred slab sinking rates in the mantle focusing on well-constrained regions. We derive a globally averaged slab-sinking rate of 13 ± 3 mm/yr by combining the ages of onset and cessation of subduction from geological data and kinematic reconstructions with images of subducted slabs in the mantle. Our global average slab-sinking rate overlaps with the 15–20 mm/yr rate implied by mantle convection models using a lower mantle viscosity 100 times higher than the upper mantle.  相似文献   

16.
Accretionary wedge is the typical product of subduction-zone processes at shallow depths.Determining the location,composition and mechanism of accretionary wedge has important implications for understanding the tectonism of plate subduction.The Central Asian Orogenic Belt(CAOB) is one of the world's largest accretionary orogenic belts,and records the bulk evolution of Paleo-Asian Ocean from opening to closure,with multi-stages and multi-types of crust-mantle interaction in the Paleozoic.West Junggar(western part of Junggar Basin),located in the core area of CAOB,is characterized by a multiple intra-oceanic subduction system during the Paleozoic.In its eastern part crop out Devonian-Carboniferous marine sedimentary rocks,Darbut and Karamay ophiolitic melanges,alkali oceanic island basalts,island arc volcanic rocks and thrusted nappe structure.Such lithotectonic associations indicate the occurrence of accretionary wedge at Karamay.In order to decipher its formation mechanism,this paper presents a synthesis of petrography,structural geology and geochemistry of volcanic rocks.In combination with oceanic subduction channel processes,itis suggested that the accretionary wedge is acomposite melange with multiple stages of formation.The application of oceanic subduction channel model to the Karamay accretionary wedge provides new insights into the accretion and orogenesis of CAOB.  相似文献   

17.
Abstract   The silicic volcanic rocks in Central Luzon show a temporal and spatial relationship with its geochemistry. Volcanic centers dated to approximately 5 Ma are silicic in geochemical composition whereas those between <5–1 Ma expose basaltic to andesitic rocks. Volcanic centers dated <1 Ma are characterized by a wide range of geochemistry encompassing basaltic through andesitic to dacitic signatures. Aside from changes in geochemistry through time, the areas (i.e. fore-arc to back-arc region) where the volcanic centers are formed also vary. The shift in the location of the volcanic centers in Central Luzon is attributed to changes in the dip of subduction of the South China Sea crust along the Manila Trench. Flat subduction resulted from the subduction of the Scarborough Seamount Chain, an oceanic bathymetric high along the Manila Trench west of northern Luzon. However, collision of Luzon with Taiwan in the north and Palawan in the south resulted in steepening of the subduction angle. The silicic volcanic centers in the forearc (Ce/Yb = 20–140) and back-arc (Ce/Yb = 20–60) regions are generally characterized by higher Ce/Yb compared to the basaltic-andesitic volcanic rocks in the main volcanic arc (Ce/Yb = 20) and back-arc (Ce/Yb = 20–30) regions. This across-arc geochemical variation highlights the contributions from the slab, mantle and crust coupled with the effects of geochemical processes that include partial melting, fractionation, magma mixing and mantle–melt interaction.  相似文献   

18.
臧绍先  宁杰远 《地震学报》1989,11(2):113-123
利用ISC及中国台网的资料,研究了琉球岛弧及冲绳海槽的地震分布及震源机制解,讨论了Benioff带的形态及应力状态.mb4.0的地震主要分布于琉球海沟西侧的弧形带,并形成明显的Benioff带.吐噶喇海峡以北俯冲带弯曲明显,深部倾角大,约92,70km以下张应力轴沿俯冲方向;吐噶喇海峡以南,俯冲带较平直,深部倾角较小,约55,压应力轴基本沿俯冲方向。冲绳海槽内处于NNW向近水平的拉伸,华北应力场与之类似,没有受到菲律宾海块挤压作用的影响.   相似文献   

19.
Collision, subduction and accretion events in the Philippines: A synthesis   总被引:7,自引:0,他引:7  
Abstract The Philippines preserves evidence of the superimposition of tectonic processes in ancient and present‐day collision and subduction zone complexes. The Baguio District in northern Luzon, the Palawan–Central Philippine region and the Mati–Pujada area in southeastern Mindanao resulted from events related to subduction polarity reversal leading to trench initiation, continent‐arc collision and autochthonous oceanic lithosphere emplacement, respectively. Geological data on the Baguio District in Northern Luzon reveal an Early Miocene trench initiation for the east‐dipping Manila Trench. This followed the Late Oligocene cessation of subduction along the west‐dipping proto‐East Luzon Trough. The Manila Trench initiation, which is modeled as a consequence of the counter‐clockwise rotation of Luzon, is attributed to the collision of the Palawan microcontinental block with the Philippine Mobile Belt. In the course of rotation, Luzon onramped the South China Sea crust, effectively converting the shear zone that bounded them into a subduction zone. Several collision‐related accretionary complexes (e.g. Romblon, Mindoro) are present in the Palawan–Central Philippine region. The easternmost collision zone boundary is located east of the Romblon group of islands. The Early Miocene southwestward shift of the collision boundary from Romblon to Mindoro started to end by the Pliocene. Continuous interaction between the Palawan microcontinental block and the Philippine Mobile Belt is presently taken up again along the collisional boundary east of the Romblon group of islands. The Mati–Pujada Peninsula area, on the other hand, is underlain by the Upper Cretaceous Pujada Ophiolite. This supra‐subduction zone ophiolite is capped by chert and pelagic limestones which suggests its derivation from a relatively deep marginal basin. The Pujada Ophiolite could be a part of a proto‐Molucca Sea plate. The re‐interpretation of the geology and tectonic settings of the three areas reaffirm the complex geodynamic evolution of the Philippine archipelago and addresses some of its perceived geological enigmas.  相似文献   

20.
利用ISC地震资料研究了台湾南部~菲律宾群岛的地震空间分布和m_b≥5.0的机制解,讨论了俯冲带的形态和地壳及俯冲带上的应力状态,并结合地质和地球物理的研究结果,认为南海次板块的东部边界是由台湾西南俯冲带、马尼拉俯冲带、内格罗斯俯冲带、哥达巴都俯冲带组成,菲律宾海板块的西部边界由东吕宋海槽俯冲带、菲律宾海俯冲带组成。菲律宾群岛是一个形变过渡带,由于该过渡带的存在,南海次板块俯冲于菲律宾群岛之下,菲律宾海板块对南部的影响很弱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号