首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200 bar (1 bar = 105 Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16 °C, 50 bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (ρpore) with sizes (r) 1 × 105  r  1 × 104 Å (ρpore  0.489 g/cm3) as well as in small pores with size between 30 and 300 Å (ρpore  0.671 g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (ρCO2) under similar thermodynamic conditions (ρCO2  0.15 g/cm3). At the same time, in the intermediate size pores with r  1000 Å the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100 bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (ρpore / ρCO2  0.6). Neutron scattering from the Bulli 4 coal did not show any significant variation with pressure, a phenomenon which we assign to the extremely small amount of porosity of this coal in the pore size range between 35 and 100,000 Å.  相似文献   

2.
Pristine diorite drill cores, obtained from the Äspö Hard Rock Laboratory (HRL, Sweden), were used to study the retention properties of fresh, anoxic crystalline rock material towards the redox-sensitive uranium. Batch sorption experiments and spectroscopic methods were applied for this study. The impact of various parameters, such as solid-to-liquid ratio (2–200 g/L), grain size (0.063–0.2 mm, 0.5–1 mm, 1–2 mm), temperature (room temperature and 10 °C), contact time (5–108 days), initial U(VI) concentration (3 × 10−9 to 6 × 10−5 M), and background electrolyte (synthetic Äspö groundwater and 0.1 M NaClO4) on the U(VI) sorption onto anoxic diorite was studied under anoxic conditions (N2). Comparatively, U(VI) sorption onto oxidized diorite material was studied under ambient atmosphere (pCO2 = 10−3.5 atm). Conventional distribution coefficients, Kd, and surface area normalized distribution coefficients, Ka, were determined. The Kd value for the U(VI) sorption onto anoxic diorite in synthetic Äspö groundwater under anoxic conditions by investigating the sorption isotherm amounts to 3.8 ± 0.6 L/kg which corresponds to Ka = 0.0030 ± 0.0005 cm (grain size 1–2 mm). This indicates a weak U sorption onto diorite which can be attributed to the occurrence of the neutral complex Ca2UO2(CO3)3(aq) in solution. This complex was verified as predominating U species in synthetic Äspö groundwater by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Compared to U sorption at room temperature under anoxic conditions, U sorption is further reduced at decreased temperature (10 °C) and under ambient atmosphere. The U species in aqueous solution as well as sorbed on diorite were studied by in situ time-resolved attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. A predominant sorbing species containing a UO2(CO3)34− moiety was identified. The extent of U sorption onto diorite was found to depend more on the low sorption affinity of the Ca2UO2(CO3)3(aq) complex than on reduction processes of uranium.  相似文献   

3.
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro.For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C.The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.  相似文献   

4.
A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 × 105 m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11 × 103 m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 × 106 m3 of CO2 could be stored within a 21.4 × 105 m2 of coal seam with a thickness of 3 m.  相似文献   

5.
Sequestration of carbon dioxide in unmineable coal seams is an option to reduce carbon dioxide emissions. It is well known that the interaction of carbon dioxide with unconfined coal induces swelling. This paper contributes three-dimensional strain distribution in confined coal at microstructural level using high-resolution X-ray computerized tomography data and image analysis. Swelling and compression/compaction of regions in the coal matrix occurs with CO2 uptake. Normal strain varies between ? 1.15% and 0.93%, ? 3.11% and 0.94%, ? 0.43% and 0.30% along x, y and z axes respectively. Volumetric strain varies between ? 4.25% and 1.25%. The positive strains reported are consistent with typical range for unconstrained swelling. However, the average volumetric strains value (? 0.34%) reflect overall volume reduction. Overall swelling is apparently influenced by the confining stresses. The magnitudes of normal strains are heterogeneous and anisotropic. The swelling vs. compression/compaction observed after CO2 uptake is localized and likely lithotype dependant.  相似文献   

6.
Complete sorption isotherm characteristics of methane and CO2 were studied on fourteen sub-bituminous to high-volatile bituminous Indian Gondwana coals. The mean vitrinite reflectance values of the coal samples are within the range of 0.64% to 1.30% with varying maceral composition. All isotherms were conducted at 30 °C on dry, powdered coal samples up to a maximum experimental pressure of ~ 7.8 MPa and 5.8 MPa for methane and CO2, respectively.The nature of the isotherms varied widely within the experimental pressure range with some of the samples remained under-saturated while the others attained saturation. The CO2 to methane adsorption ratios decreased with the increase in experimental pressure and the overall variation was between 4:1 and 1.5:1 for most of the coals. For both methane and CO2, the lower-ranked coal samples generally exhibited higher sorption affinity compared to the higher-ranked coals. However, sorption capacity indicates a U-shaped trend with rank. Significant hysteresis was observed between the ad/desorption isotherms for CO2. However, with methane, hysteresis was either absent or insignificant. It was also observed that the coal maceral compositions had a significant impact on the sorption capacities for both methane and CO2. Coals with higher vitrinite contents showed higher capacities while internite content indicated a negative impact on the sorption capacity.  相似文献   

7.
CO2, CH4, and N2 adsorption and gas-induced swelling were quantified for block Blind Canyon, Pittsburgh #8 and Pocahontas Argonne Premium coals that were dried and structurally relaxed at 75 °C in vacuum. Strain measurements were made perpendicular and parallel to the bedding plane on ~ 7 × 7 × 7 mm3 coal blocks and gravimetric sorption measurements were obtained simultaneously on companion coal blocks exposed to the same gaseous environment. The adsorption amount and strain were determined after equilibration at P   1.8 MPa. There is a strong non-linear correlation between strain and the quantity of gas adsorbed and the results for all gases and coals studied follow a common pattern. The dependence of the coal matrix shrinkage/swelling coefficient (Cgc) on the type and quantity of gas adsorbed is seen by plotting the ratio between the strain and the adsorbate concentration against the adsorbate concentration. In general, Cgc increases with increasing adsorbate concentration over the range of ~ 0.1 to 1.4 mmol/g. Results from the dried block coals are compared to CO2 experiments using native coals with an inherent level of moisture as received. The amount of CO2 adsorbed using native coals (assuming no displacement of H2O by CO2) is significantly less than the dried coals. The gas-induced strain (S) and adsorption amount (M) were measured as a function of time following step changes in CO2, CH4, and N2 pressure from vacuum to 1.8 MPa. An empirical diffusion equation was applied to the kinetic data to obtain the exponent (n) for time dependence for each experiment. The data for all coals were pooled and the exponent (n) evaluated using an ANOVA statistical analysis method. Values for (n) near 0.5 were found to be independent on the coal, the gas or type of measurement (e.g., parallel strain, perpendicular strain, and gas uptake). These data support the use of a Fickian diffusion model framework for kinetic analysis. The kinetic constant k was determined using a unipore diffusion model for each experiment and the data were pooled for ANOVA analysis. For dry coal, statistically significant differences for k were found for the gases (CO2 > N2 > CH4) and coals (Pocahontas >Blind Canyon > Pittsburgh #8) but not for the method of the kinetic measurement (e.g., strain or gas uptake). For Blind Canyon and Pittsburgh #8 coal, the rate of CO2 adsorption and gas-induced strain for dry coal was significantly greater than that of the corresponding native coal. For Pocahontas coal the rates of CO2 adsorption and gas-induced strain for dry and native coal were indistinguishable and may be related to its low native moisture and minimal amount of created porosity upon drying.  相似文献   

8.
The dissolution kinetics of carbonate rocks sampled from the Keg River Formation in Northeast British Columbia were measured at 50 bar pCO2 and 105 °C, in both natural and synthetic brines of 0.4 M ionic strength. Natural brines yielded reaction rates of −12.16 ± 0.11 mol cm−2 s−1 for Log RCa, and −12.64 ± 0.05 for Log RMg. Synthetic brine yielded faster rates of reaction than natural brines. Experiments performed on synthetic brines, spiked with 10 mmol of either Sr or Zn, suggest that enhanced reaction rates observed in synthetic brines are due to a lack of trace ion interaction with mineral surfaces. Results were interpreted within the surface complexation model framework, allowing for the discrimination of reactive surface sites, most importantly the hydration of the >MgOH surface site. Dissolution rates extrapolated from experiments predict that CO2 injected into the Keg River Formation will dissolve a very minor portion of rock in contact with affected formation waters.  相似文献   

9.
Streams and rivers are major exporters of C and other dissolved materials from watersheds to coastal waters. In streams and rivers, substantial amounts of terrigenous organic C is metabolized and degassed as CO2 to the atmosphere. A long-term evaluation of CO2 dynamics in streams is essential for understanding factors controlling CO2 dynamics in streams in response to changes in climate and land-use. Long-term changes in the partial pressure of CO2 (pCO2) were computed in the Anacostia River and the lower Potomac River in the Chesapeake Bay watershed. Long-term estimates were made using routine monitoring data of pH, total alkalinity, and dissolved nutrients from 1985 to 2006 at 14 stations. Longitudinal variability in pCO2 dynamics was also investigated along these rivers downstream of the urban Washington D.C. metropolitan area. Both rivers were supersaturated with CO2 with respect to atmospheric CO2 levels (392 μatm) and the highly urbanized Anacostia waters (202–9694 μatm) were more supersaturated than the Potomac waters (557–3800 μatm). Long-term variability in pCO2 values may be due to changes in river metabolism and organic matter and nutrient loadings. Both rivers exchange significant amounts of CO2 with the atmosphere (i.e., Anacostia at 0.2–72 mmol m−2 d−1 and Potomac at 0.12–24 mmol m−2 d−1), implying that waterways receiving organic matter and nutrient subsidies from urbanized landscapes have the potential to increase river metabolism and atmospheric CO2 fluxes along the freshwater–estuarine continuum.  相似文献   

10.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

11.
《Gondwana Research》2016,29(4):1391-1414
Experiments on the origin of the Udachnaya-East kimberlite (UEK) have been performed using a Kawai-type multianvil apparatus at 3–6.5 GPa and 900–1500 °C. The studied composition represents exceptionally fresh Group-I kimberlite containing (wt.%): SiO2 = 25.9, TiO2 = 1.8, Al2O3 = 2.8, FeO = 9.0, MgO = 30.1, CaO = 12.7, Na2O = 3.4, K2O = 1.3, P2O5 = 1.0, Cl = 0.9, CO2 = 9.9, and H2O = 0.5. The super-solidus assemblage consists of melt, olivine (Ol), Ca-rich (26.0–30.2 wt.% CaO) garnet (Gt), Al-spinel (Sp), perovskite (Pv), a CaCO3 phase (calcite or aragonite), and apatite. The low pressure assemblage (3–4 GPa) also includes clinopyroxene. The apparent solidus was established between 900 and 1000 °C at 6.5 GPa. At 6.5 GPa and 900 °C Na–Ca carbonate with molar ratio of (Na + K)/Ca  0.44 was observed. The UEK did not achieve complete melting even at 1500 °C and 6.5 GPa, due to excess xenogenic Ol in the starting material. In the studied PT range, the melt has a Ca-carbonatite composition (Ca# = molar Ca/(Ca + Mg) ratio = 0.62–0.84) with high alkali and Cl contents (7.3–11.4 wt.% Na2O, 2.8–6.7 wt.% K2O, 1.6–3.4 wt.% Cl). The K, Na and Cl contents and Ca# decrease with temperature. It is argued that the primary kimberlite melt at depths > 200 km was an essentially carbonatitic (< 5 wt.% SiO2), but evolved toward a carbonate–silicate composition (up to 15–20 wt.% SiO2) during ascent. The absence of orthopyroxene among the run products indicates that xenogenic orthopyroxene was preferentially dissolved into the kimberlite melt. The obtained subliquidus phase assemblage (Ol + Sp + Pv + Ca-rich Gt) at PT conditions of the UEK source region, i.e. where melt was in the last equilibrium with source rock before magma ascent, differs from the Opx-bearing peridotitic mineral assemblage of the UEK source region. This difference can be ascribed to the loss of substantial amounts of CO2 from the kimberlite magma at shallow depths, as indicated by both petrological and experimental data. Our study implies that alkali-carbonatite melt would be a liquid phase within mantle plumes generated at the core–mantle boundary or shallower levels of the mantle, enhancing the ascent velocity of the plumes. We conclude that the long-term activity of a rising hot mantle plume and associated carbonatite melt (i.e. kimberlite melt) causes thermo-mechanical erosion of the subcontinental lithosphere mantle (SCLM) roots and creates hot and deformed metasomatic regions in the lower parts of the SCLM, which corresponds to depths constrained by PT estimates of sheared Gt-peridotite xenoliths. The sheared Gt-peridotites undoubtedly represent samples of these regions.  相似文献   

12.
Stable isotopes of injected CO2 act as useful tracers in carbon capture and storage (CCS) because the CO2 itself is the carrier of the tracer signal and remains unaffected by sorption or partitioning effects. At the Ketzin pilot site (Germany), carbon stable isotope composition (δ13C) of injected CO2 at the injection well was analyzed over a time period of 4 months. Occurring isotope variances resulted from the injection of CO2 from two different sources (an oil refinery and a natural gas-reservoir). The two gases differed in their carbon isotope composition by more than 27‰. In order to find identifiable patterns of these variances in the reservoir, more than 250 CO2-samples were collected and analyzed for their carbon isotope ratios at an observation well 100 m distant from the injection well. An isotope ratio mass spectrometer connected to a modified Thermo Gasbench system allowed quick and cost effective isotope analyses of a high number of CO2 gas specimens. CO2 gas from the oil refinery (δ13C = −30.9‰, source A) was most frequently injected and dominated the reservoir δ13C values at the injection site. Sporadic injection of the CO2 from the natural gas-reservoir (δ13C = −3.5‰, source B) caused isotope shifts of up to +5‰ at the injection well. These variances provided a potential ideal tracer for CO2 migration behavior. Based on these findings, tracer input signals that were injected during the last 2 years of injection could be reconstructed with the aid of an isotope mixing model and CO2 delivery schedules. However, in contrast to the injection well, δ13C values at the observation well showed no variances and a constant value of −28.5‰ was measured at 600 m depth. This is in disagreement with signals that would be expected if the input signals from the injection would arrive at the observation well. The lack of isotope signals at the observation well suggests that parts of the reservoir are filled with CO2 that is immobilized.  相似文献   

13.
The mudstones in the third member of the Shahejie Formation (Es3) are the primary source rocks in the Banqiao Depression of Bohai Bay Basin. They are rich in organic matter with Total Organic Carbon (TOC) content up to 3.5%. The sandstones in the Es3 member are the deepest proven hydrocarbon reservoir rocks with measured porosity and permeability values ranging from 3.6% to 32.4% and from 0.01 md to 3283.7 md, respectively. One, two and three-dimensional basin modelling studies were performed to analyse the petroleum generation and migration history of the Es3 member in the Banqiao Depression based on the reconstruction of the burial, thermal and maturity history in order to evaluate the remaining potential of this petroleum province. The modelling results are calibrated with measured vitrinite reflectance (Ro), borehole temperatures and some drilling results of 63 wells in the study area. Calibration of the model with thermal maturity and borehole temperature data indicates that the present-day heat flow in the Banqiao Depression varies from 59.8 mW/m2 to 61.7 mW/m2 and the paleo-heat flow increased from 65 Ma to 50.4 Ma, reached a peak heat-flow values of approximately 75 mW/m2 at 50.4 Ma and then decreased exponentially from 50.4 Ma to present-day. The source rocks of the Es3 member are presently in a stage of oil and condensate generation with maturity from 0.5% to 1.8% Ro and had maturity from 0.5% to 1.25% Ro at the end of the Dongying Formation (Ed) deposition (26 Ma). Oil generation (0.5% Ro) in the Es3 member began from about 37 Ma to 34 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 30 Ma to 15 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Es3 member source rocks began from 31 Ma to 10 Ma with the peak hydrocarbon expulsion shortly after 26 Ma. Secondary petroleum migration pathways in the Es3 member of the Banqiao Depression are modelled based on the structure surfaces at 26 Ma and present-day, respectively. The migration history modelling results have accurately predicted the petroleum occurrences within the Es3 member of the Banqiao Depression based on the calibration with drilling results of 10 oil-producing wells, one well with oil shows and 52 dry holes. Six favorable zones of oil accumulations in the Es3 member of the Banqiao Depression are identified especially oil accumulation zones I and II due to their proximity to the generative kitchens, short oil migration distances and the presence of a powerful drive force.  相似文献   

14.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

15.
Subduction of heterogeneous lithologies (sediments and altered basalts) carries a mixture of volatile components (H2O ± CO2) into the mantle, which are later mobilized during episodes of devolatilization and flux melting. Several petrologic and thermodynamic studies investigated CO2 decarbonation to better understand carbon cycling at convergent margins. A paradox arose when investigations showed little to no decarbonation along present day subduction geotherms at subarc depths despite field based observations. Sediment diapirism is invoked as one of several methods for carbon transfer from the subducting slab. We employ high-resolution 2D petrological–thermomechanical modeling to elucidate the role subduction dynamics has with respect to slab decarbonation and the sediment diapirism hypothesis. Our thermodynamic database is modified to account for H2O–CO2 binary fluids via the following lithologies: GLOSS average sediments (H2O: 7.29 wt.% & CO2: 3.01 wt.%), carbonated altered basalts (H2O: 2.63 wt.% & CO2: 2.90 wt.%), and carbonated peridotites (H2O: 1.98 wt.% & CO2: 1.50 wt.%). We include a CO2 solubility P–x[H2O wt.%] parameterization for sediment melts. We parameterize our model by varying two components: slab age (20, 40, 60, 80 Ma) and convergence velocity (1, 2, 3, 4, 5, 6 cm year 1). 59 numerical models were run and show excellent agreement with the original code base. Three geodynamic regimes showed significant decarbonation. 1) Sedimentary diapirism acts as an efficient physical mechanism for CO2 removal from the slab as it advects into the hotter mantle wedge. 2) If subduction rates are slow, frictional coupling between the subducting and overriding plate occurs. Mafic crust is mechanically incorporated into a section of the lower crust and undergoes decarbonation. 3) During extension and slab rollback, interaction between hot asthenosphere and sediments at shallow depths result in a small window (~ 12.5 Ma) of high integrated CO2 fluxes (205 kg m 3 Ma 1).  相似文献   

16.
We investigate the helium, carbon and oxygen–hydrogen isotopic systematics and CO2/3He ratios of 8 water and 6 gas samples collected from 12 geothermal fields in western Anatolia (Turkey). 3He/4He ratios of the samples (R) normalized to the atmospheric 3He/4He ratio (RA = 1.39 × 10? 6) range from 0.27 to 1.67 and are significantly higher than the crustal production value of 0.05. Fluids with relatively high R / RA values are generally found in areas of significant heat potential (K?z?ldere and Tuzla fields). CO2/3He ratios of the samples, ranging from 1.6 × 109 to 2.3 × 1014, display significant variation and are mostly higher than values typical of an upper mantle source (2 × 109). The δ13C (CO2) and δ13C (CH4) values of all fluids vary from ? 8.04 to + 0.35‰ and ? 25.80 to ? 23.92‰ (vs. PDB), respectively. Stable isotope values (δ18O–δD) of the geothermal waters are conformable with the Mediterranean Meteoric Water Line and indicate a meteoric origin. The temperatures calculated by gas geothermometry are significantly higher than estimates from chemical geothermometers, implying that either equilibrium has not been attained for the isotope exchange reaction or that isotopic equilibration was disturbed due to gas additions en route to the surface.Evaluation of He–CO2 abundances indicates that hydrothermal degassing and calcite precipitation (controlled probably by adiabatic cooling due to degassing) significantly fractionate the elemental ratio (CO2/3He) in geothermal waters. Such processes do not affect gas phase samples to anywhere near the same extent. For the gas samples, mixing between mantle and various crustal sources appears to be the main control on the observed He–C systematics: however, crustal inputs dominate the CO2 inventory. Considering that limestone is the main source of carbon (~ 70 to 97% of the total carbon inventory), the carbon flux from the crust is found to be at least 20 times that from the mantle. As to the He-inventory, the mantle-derived component is found to vary up to 21% of the total He content and is probably transferred to the crust by fluids degassed from deep mantle melts generated in association with the elevated geotherm and adiabatic melting accompanying current extension. The range of 3He/enthalpy ratios (0.000032 to 0.19 × 10? 12 cm3 STP/J) of fluids in western Anatolia is consistent with the release of both helium and heat from contemporary additions of mantle-derived magmas to the crust. The deep faults appear to have facilitated the deep circulation of the fluids and the transport of mantle volatiles and heat to the surface.  相似文献   

17.
Following ultrahigh temperature granulite metamorphism at ∼1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02–1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (∼0.92–0.95 g/cc) and low density (∼0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (∼8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00–10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during granulite metamorphism.  相似文献   

18.
《Comptes Rendus Geoscience》2019,351(2-3):113-120
A polycrystalline specimen of liebermannite [KAlSi3O8 hollandite] was synthesized at 14.5 GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: I4/m] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13 GPa at room T in a uniaxial split-cylinder apparatus using Al2O3 as a pressure marker. Finite strain analysis of the ultrasonic data yielded KS0 = 145(1) GPa, K0 = 4.9(2), G0 = 92.3(3) GPa, G0 = 1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to VP0 = 8.4(1) km/s, VS0 = 4.9(1) km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.  相似文献   

19.
Small angle scattering techniques (SAXS and SANS) have been used to investigate the microstructural properties of the subbituminous coals (Rmax 0.42–0.45%) from the Huntly Coalfield, New Zealand. Samples were collected from the two thick (> 5 m) coal seams in the coalfield and have been analysed for methane and carbon dioxide sorption capacity, petrography, pore size distribution, specific surface area and porosity.Specific surface area (SSA) available for carbon dioxide adsorption, extrapolated to a probe size of 4 Å, ranged from 1.25 × 106 cm? 1 to 4.26 × 106 cm? 1 with total porosity varying from 16% to 25%. Porosity was found to be predominantly composed of microporosity, which contributed the majority of the available SSA. Although considerable variation was seen between samples, the results fit well with published rank trends.Gas holding capacity at the reservoir pressure (approximately 4 MPa) ranged from 2.63 to 4.18 m3/t for methane on a dry, ash-free basis (daf) and from 22.00 to 23.72 m3/t daf for carbon dioxide. The resulting ratio of CO2:CH4 ranged from 5.7 to 8.6, with an average of 6.7:1.Holding capacities for both methane and carbon dioxide on a dry ash free basis (daf) were found to be correlated with sample microporosity. However, holding capacities for the two gases on an as analysed (aa) basis (that is including mineral matter and moisture), showed no such correlation. Carbon dioxide (aa) does show a negative correlation with both specific surface area and microporosity. As the coals have low inorganic matter content, the reversal is thought to be related to moisture which is likely concentrated in the pore size range 12.5–125 Å. Methane holding capacity, both daf and aa, correlates with macroporosity, thus suggesting that the holding capacity of micropores is diminished by the presence of moisture in the pores.  相似文献   

20.
The Ulu Sokor gold deposit is one of the most famous and largest gold deposits in Malaysia and is located in the Central Gold Belt. This deposit consists of three major orebodies that are related to NS- and NE-striking fractures within fault zones in Permian-Triassic meta-sedimentary and volcanic rocks of the East Malaya Block. The faulting events represent different episodes that are related to each orebody and are correlated well with the mineralogy and paragenesis. The gold mineralization consists of quartz-dominant vein systems with sulfides and carbonates. The hydrothermal alteration and mineralization occurred during three stages that were characterized by (I) silicification and brecciation; (II) carbonatization, sericitization, and chloritization; and (III) quartz–carbonate veins.Fluid inclusions in the hydrothermal quartz and calcite of the three stages were studied. The primary CO2–CH4–H2O–NaCl fluid inclusions in stage I are mostly related to gold mineralization and display homogenization temperatures of 269–389 °C, salinities of 2.77–11.89 wt.% NaCl equivalent, variable CO2 contents (typically 5–29 mol%), and up to 15 mol% CH4. In stage II, gold was deposited at 235–398 °C from a CO2 ± CH4–H2O–NaCl fluid with a salinity of 0.83–9.28 wt.% NaCl equivalent, variable CO2 contents (typically 5–63 mol%), and up to 4 mol% CH4. The δ18OH2O and δD values of the ore-forming fluids from the stage II quartz veins are 4.5 to 4.8‰ and − 44 to − 42‰, respectively, and indicate a metamorphic–hydrothermal origin. Oxygen fugacities calculated for the entire range of T-P-XCO2 conditions yielded log fO2 values between − 28.95 and − 36.73 for stage I and between − 28.32 and − 39.18 for stage II. These values indicate reduced conditions for these fluids, which are consistent with the mineral paragenesis, fluid inclusion compositions, and isotope values.The presence of daughter mineral-bearing aqueous inclusions is interpreted to be a magmatic signature of stage IIIa. Combined with the oxygen and hydrogen isotopic compositions (δ18OH2O = 6.8 to 11.9‰, δD =  77 to − 62‰), these inclusions indicate that the initial fluid was likely derived from a magmatic source. In stage IIIb, the gold was deposited at 263° to 347 °C from a CO2–CH4–H2O–NaCl fluid with a salinity of 5.33 to 11.05 wt.% NaCl equivalent, variable CO2 contents (typically 9–15 mol%), and little CH4. The oxygen and hydrogen isotopic compositions of this fluid (δ18OH2O = 8.1 to 8.8‰, δD =  44 to − 32‰) indicate that it was mainly derived from a metamorphic–hydrothermal source. The CO2–H2O ± CH4–NaCl fluids that were responsible for gold deposition in the stage IIIc veins had a wide range of temperatures (214–483 °C), salinities of 1.02 to 21.34 wt.% NaCl equivalent, variable CO2 contents (typically 4–53 mol%), and up to 7 mol% CH4. The oxygen and hydrogen isotopic compositions (δ18OH2O = 8.5 to 9.8‰, δD =  70 to − 58‰) were probably acquired at the site of deposition by mixing of the metamorphic–hydrothermal fluid with deep-seated magmatic water and then evolved by degassing at the site of deposition during mineralization. The log fO2 values from − 28.26 to − 35.51 also indicate reduced conditions for this fluid in stage IIIc. Moreover, this fluid had a near-neutral pH and δ34S values of H2S of − 2.32 to 0.83‰, which may reflect the derivation of sulfur from the subducted oceanic lithospheric materials.The three orebodies represent different gold transportation and precipitation models, and the conditions of ore formation are related to distinct events of hydrothermal alteration and gold mineralization. The gold mineralization of the Ulu Sokor deposit occurred in response to complex and concurrent processes involving fluid immiscibility, fluid–rock reactions, and fluid mixing. However, fluid immiscibility was the most important mechanism for gold deposition and occurred in these orebodies, which have corresponding fluid properties, structural controls, geologic characteristics, tectonic settings, and origins of the ore-forming matter. These characteristics of the Ulu Sokor deposit are consistent with its classification as an orogenic gold deposit, while some of the veins are genetically related to intrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号