首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   

2.
P. Thomas 《Icarus》1981,48(1):76-90
A comparison of crater-related wind markers in the north and south polar (40–90° latitude) regions of Mars has been made on the basis of comprehensive mapping from Viking Orbiter and Mariner 9 Images. Wind streaks show that present wind activity is most effective in both north and south in the southern spring and summer. This asymmetry is consistent with the present asymmetry of climate. The more massive intracrater dune fields are also oriented with the presently strongest winds. This alignment may reflect a long-term asymmetry in the effectiveness of northern and southern spring flow because reorientation times far exceed the period of cycles of hemispherical climate asymmetry, ≈51, 000 years. Streaks originating from dark crater splotches indicate that windflow away from the south pole is effective over a larger latitude range than it is in the north. This difference may be partly responsible for the contrasting distribution of dune sand in the north and south polar regions.  相似文献   

3.
Dunes have similar morphologies on the Earth and Mars. The main differences between Martian and terrestrial dunes are their size, which is larger on Mars, and their duration of formation, which is longer on Mars. As the characteristic time of Martian dunes is in the same order as that of the Martian climatic oscillations, Martian dunes could be recorders of past winds regimes and past climates. In order to test this hypothesis, we performed a morphological study of 550 dune fields with high resolution images and we inferred the directions of the dune formative winds from the orientation of the dune slip faces. Our study shows that 310 dune fields record one to four distinct wind directions with some geometric patterns that do not exist on the Earth such as barchans built by opposite wind directions coexisting in the same dune field. Our study demonstrates that the inferred formative wind directions are only partially in agreement with the current wind-patterns predicted by General Circulation Models (GCM). Several possible causes for the misalignment between dunes and GCM outputs are discussed: these include the local variation of the global circulation due to local topographic effects or the possibility that these dunes could be in a transient geometry or fossil. Such bedforms are considered indeed to be not in equilibrium with the present-day atmospheric conditions. This latter hypothesis is supported by the presence, in some ergs, of closely spaced dunes showing nearly opposite slip face orientations. Therefore, we propose that Martian dune fields are constituted, in some cases, by active and fossil dunes and therefore have the potential to preserve information on paleoclimates over extensive periods.  相似文献   

4.
An investigation of the Martian polar cap winds and their response to a variety of factors is carried out by a series of numerical experiments based on a zonally symmetric primitive equation model. These factors are the seasonal thermal forcing, mass exchange between polar caps and atmosphere, large-scale topography, and polar cap size. The thermal forcing sets up a circulation whose surface winds adjust to achieve angular momentum balance, with low-latitude easterlies and high-latitude westerlies. The maximum westerlies occur roughly where the horizontal temperature gradients are largest. This pattern changes when cap and atmosphere exchange mass. Corriolis forces acting on the net outflow or inflow produce easterlies at the surface during spring (outflow) and westerlies during winter (inflow). Topography appears to have a small effect, but cap size does play a role, the circulation intensity increasing with cap size. Peak surface winds occur when outflow or inflow is a maximum and are 20 m sec?1 during spring and 30 m sec?1 during winter for the northern hemisphere. The model results show that surface winds near the edge of a retreating polar cap are substantially enhanced, a result which is consistent with the Viking observations of local dust storm activity near the edge of the south polar cap during spring. The results also indicate that the surficial wind indicators near the south pole are formed during spring and those near the north pole during winter. The implication is that the high-latitude dune fields in the northern hemisphere are formed at a time when the terrain is being covered with frost. It is therefore suggested that the saltating particles are “snowflakes” which have formed by the mechanism proposed by Pollack etal. The model results for the winter simulation, which have formed by the mechanism transport by large-scale eddies, compare favorably with general circulation model (GCM) calculations. This suggests that the eddy transports may be less important than those associated with the net mass flow, and that 2-D climate modeling may be more succesful for Mars than Earth.  相似文献   

5.
Philip B. James 《Icarus》1982,52(3):565-569
The 1979–1980 regression curve for the north polar cap of Mars, determined from Viking orbiter images, is compared to Viking observations of the same season 1 (Martin) year earlier and to telescopic observations. Differences between the two years cannot unambigously be attributed to dynamical effects because of uncertainties introduced by limited longitudinal coverage.  相似文献   

6.
Bistatic radar observations of Mars' north polar region during 1977–1978 showed surface rms slope σβ ranging from 1 to 6°; these values apply to horizontal scales of 1–100 m. Values of roughness tend to decrease with increasing latitude (especially over 65–80°N), but there are many exceptions. The smoothest surfaces (σβ≤1°) appear to be inclusions within generally rougher (σβ~3°) terrain, rather than broad expanses of very smooth material. The permanent north polar cap is relatively uniform with 2.5?σβ?3.0°. Considerable structure has been found in echo spectra, indicating a heterogeneous and perhaps anisotropic scattering surface. Echo spectra obtained from the same region, but several months apart (1°<LS<62°), show no significant differences in inferred roughness. Estimates of reflectivity and dielectric constant are systematically low in the polar region. This may indicate that surface material north of 65°N is less dense than that near the equator, but more study of these data is needed. Estimates of surface roughness and dielectric constant in the equatorial region are consistent with results from Earth-based measurements to the accuracy of our analysis.  相似文献   

7.
8.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   

9.
H.J. Melosh 《Icarus》1980,44(3):745-751
Both geologic and free-air-gravity data suggest that the positive mass anomaly associated with the Tharsis volcanoes may have reoriented Mars' lithosphere by as much as 25°. Since Mars is oblate (with flattening ? ?0.005), rotation of the lithosphere over the equatorial bulge by 25° produces membrane stresses of several kilobars, large enough to initiate faulting. These stresses were first evaluated by F.A. Vening-Meinesz (1947, Trans. Amer. Geophys. Union28, 1–61) who treated the lithosphere as a thin elastic shell. The fracture patterns which result from these stresses are determined by the relation between stress and faulting proposed by E.M. Anderson (1951, The Dynamics of Faulting, Oliver & Boyd, Edinburgh). Plots of the magnitude and direction of stresses in a reoriented planet show that near Tharsis the dominant fault type should be north-south- trending normal faults. This normal fault province is centered about 30°N latitude and extends about 45° east and west in longitude. Similar faults should occur at the antipodes, north of Hellas Planitia. The polar regions should be occupied by roughly north-south-trending thrust faults which extend close to the equator south of Tharsis and north of Hellas. The regions between Tharsis and Hellas are subject to compression on a NE-trending axis and extension along a NW axis east of Tharsis (west of Tharsis the directions are NW compression and NE extension), thus predicting a zone of NNW and ENE strike slip faults east of Tharsis (NNE and WNW west of Tharsis). Although these patterns, except for the north-south normal faults north of Tharsis, have not yet been recognized, the discovery of such a tectonic system of the same age as Tharsis would provide strong support for the reorientation idea. Stresses due to reorientation appear to have little to do with Valles Marineris, since the stress normal to the axis of the Valles is predicted to be compressive, whereas geologic evidence suggests extension.  相似文献   

10.
Dune-forming winds on Titan and the influence of topography   总被引:1,自引:0,他引:1  
Tetsuya Tokano 《Icarus》2008,194(1):243-262
Numerous extended dunes on Saturn's moon Titan detected by the Cassini RADAR constrain the long-term pattern of surface winds. We analyse the statistics of surface wind speed and direction and their spatial and temporal variability predicted by a general circulation model (GCM) in order to constrain surface wind predictions of this GCM by dune observations. The model shows that modern winds are sufficient for saltation and dune formation at low latitudes, in agreement with the presence of dunes there. The best condition for the dune-forming wind occurs with a threshold friction speed of 0.02 m s−1 or slightly less. The equatorial region is conducive to longitudinal dunes because of a combined effect of a high sand drift potential and obtuse bimodal wind pattern oblique to the equator caused by the seasonal reversal of the Hadley circulation. The cross-equatorial wind is steady, and is characterised by a high Weibull shape parameter (k∼4). The wind pattern at higher latitudes is more complex and gusty, and neither longitudinal nor transversal dunes would be able to form. Putative large-scale topography is found to have a profound influence on the near-surface wind pattern. Generally mountains cause a convergence and speeding up on the flank, while basins weaken the wind and cause a divergent flow. Longitudinal dunes can be deflected on the foot of mountains by up to 90°. If Xanadu is a hypothetical large mountain, a wind pattern converging in Xanadu that entirely disagrees with the dune observations is predicted. If instead Xanadu is a large basin, the wind arcs clockwise north of Xanadu and anti-clockwise west and southwest of Xanadu, in agreement with the dune orientations in the vicinity of Xanadu. The albedo pattern has comparatively little influence on the wind field. Isolated mountain chains cause only local-scale change in the wind pattern. However, the persistent surface easterlies in Belet, which are in conflict with the dune orientations, do not disappear by any combination of large-scale topography.  相似文献   

11.
Building upon previous studies, we have used Mars Orbiter Camera and Mars Orbiter Laser Altimeter data to characterize in detail the newly discovered north polar basal unit. Lying stratigraphically between the polar layered deposits, from which it is likely separated by an unconformity, and the Vastitas Borealis Formation, this unit has introduced new complexity into north polar stratigraphy and has important implications for polar history. Exposures of the basal unit in Olympia Planitia and Chasma Boreale reveal relatively dark layers which exhibit differential erosion. Eroded primarily by wind, the basal unit may be the major if not sole source for the north polar dunes and ergs and has contributed material to the lower polar cap layers. We investigate four possible origins for the basal unit (outflow channel/oceanic deposits, basal ice, paleopolar deposits, and eolian deposits). The patchy layering within the unit, its likely sandy grain size, and presence only in the north polar basin suggest that it is primarily an eolian deposit, supporting Byrne and Murray's 2002 earlier conclusion. This implies that at some time during the Early to Late Amazonian, migrating sand was mixed with water ice, forming a relatively dark, sandy deposit. During this time, either no classic polar layered deposits were forming or smaller caps were growing and shrinking, possibly adding material to the basal unit.  相似文献   

12.
Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ±30° of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes.  相似文献   

13.
Observations of the magnetic fields in the polar regions of the Sun are presented for the period 1960–1971. At the start of this interval the fields at the two poles were consistently of opposite sign and averaged around 1 G. Early in 1961 the field in the south decreased suddenly and the field in the north decreased in strength slowly over the next few years. By the mid-1960's the fields at both poles were quite weak and irregular. Throughout the period of these observations the fields at both poles often showed a remarkable tendency to vary in unison. About the middle of 1971 the north polar field became significantly positive, first at lower latitudes, then above 70 °. An autocorrelation analysis of the polar fields in the north shows a weak rotation peak, indicating significant features in these regions. A comparison of field strengths in the east and west quadrants in the north suggests that even at the extreme polar latitudes the following polarity fields are inclined slightly toward the rotation and the preceding polarity field lines are inclined slightly to trail the rotation.  相似文献   

14.
The SPICAM instrument onboard Mars Express has successfully performed two Martian years (MY 27 and MY28) of observations. Water ice cloud optical depths spatial and temporal distribution was retrieved from nadir measurements in the wavelength range 300–320 nm. During the northern spring the cloud hazes complex distribution was monitored. The clouds in the southern hemisphere formed a zonal belt in the latitude range 30–60°S. The edge of the retreating north polar hood merged with the northern tropical clouds in the range 250–350°E. The development of the aphelion cloud belt (ACB) started with the weak hazes formation (cloud optical thickness 0.1–0.3) in the equatorial region. At the end of the northern spring, the ACB cloud optical thickness reached already values of 0.3–1. The ACB decay in the end of the northern summer was accompanied with a presence of clouds in the north mid-latitudes. The expanded north polar hood merged with the north mid-latitude clouds in the eastern hemisphere. The interannual comparison indicates a decrease in cloud activity immediately after a strong dust storm in southern summer of MY28. The strong dust storms of the MY28 may also be a reason of the observed north polar hood edge shifting northward by 5°.  相似文献   

15.
The topographic and geologic characteristics of grooves and groove-like features in the south polar layered deposits near the Mars Polar Lander/Deep Space 2 landing sites are evaluated using Mariner 9 images and their derived photoclinometry, normalized using Mars Orbiter Laser Altimeter data. Although both Mariner 9 and Viking images of the south polar layered deposits were available at the time of this study, Mariner 9 images of the grooves were selected because they were generally of higher resolution than Viking images. The dimensions and slopes of the grooves, together with orientations that nearly match the strongest winds predicted in the Martian Global Circulation Model and directions inferred from other wind indicators, suggest that they formed by aeolian scour of an easily erodible surface. Most grooves are symmetric and V-shaped in transverse profile, inconsistent with an origin involving extensional brittle deformation. Although the grooves strike along slopes and terraces of the south polar layered deposits, the variable depths and lack of terracing within the grooves themselves indicate that any stratigraphy in the uppermost 100 m of the polar layered deposits is composed of layers of similar, and relatively low, resistance. The grooves do not represent landing hazards at the scale of the Mariner 9 images (72-86 m/pixel) and therefore probably would not have affected Mars Polar Lander and Deep Space 2, had they successfully reached the surface.  相似文献   

16.
We examine the stratigraphy of the polar layered deposits (PLD) within the north polar cap of Mars to assess its layer continuity, correlations, cyclicity and structure and implications for the recent climate record. PLD sequences characterized using Fourier analysis and curve shape matching algorithms show that layers correlate throughout the upper part of the PLD. We tested for cyclicity and found that the uppermost ∼300 m contain a dominant wavelength layer packet of ∼30 m, interpreted to be a climate signal related to the 51 kyr precession cycle. Directly below this region we document a section of polar layered deposits ∼100 m thick without a dominant periodic signal; this is interpreted to represent a phase of low net accumulation and lag deposits formed during the last ice age, about 0.5-2 Ma ago. We further analyzed layer structure by combining these results with three-dimensional determinations of layer orientation (strike and dip) to assess the internal stratigraphy of the PLD and its implications for polar history. We show that individual layers within the PLD stratigraphy are not horizontal (no dip) but rather show broad variation in elevation with distance. Correlations suggest that the layer strikes and dips broadly follow present cap surface topography. Local variations in layer orientations in the vicinity of the troughs suggest that (1) trough structures were present at the time of layer accumulation and (2) dips may have been influenced by ice flow and/or static ice accumulation in the presence of preexisting troughs. This new information favors models in which the troughs are long-term structures of the PLD rather than (1) recently eroded into the PLD, or (2) very active and laterally migrating around the PLD. Our results strongly support the hypothesis that significant volumes of polar volatiles are mobilized and transported equator-ward during periods of increased obliquity. Our results predict that the upper ∼300 m of the north polar PLD accumulated in the last 500 ka, yielding net accumulation rates of ∼0.06 cm/yr. The presence and albedo of the no periodic signal zone suggest that polar net accumulation rates are very low and that dust rich lag deposits form during periods of sustained high obliquity. Layer sequences in the south polar and equatorial regions are examined and compared to those in the north; rhythmic sequences are observed in both regions but no direct correlations to the dominant signals of the north polar deposits have yet been found. These new techniques and observations provide a paradigm for further analysis of recent polar history (the upper kilometer of the record) and a basis for extending assessments to the lower part of the polar deposits and to other cyclic deposits in the geological record of Mars.  相似文献   

17.
High-resolution images of Chryse Planitia and eastern Lunae Planum from the early revolutions of Viking Orbiter I permit detailed analyses of crater-associated streaks and interpretation of related eolian processes. A total of 614 light and dark streaks were studied and treated statistically in relation to: (1) morphology, morphometry, and orientation, (2) “parent” crater size and morphology, (3) terrain type in which they occured, (4) topographic elevation, and (5) meteorological data currently being acquired by Viking Lander I. Three factors are apparent: (1) light streaks predominate, (2) most streaks form in association with fresh bowl-shaped craters, and (3) most light streaks are of the “parallel” type, whereas dark streaks are approximately evenly divided between convergent and parallel forms; moreover, very few light or dark streaks are divergent or fan-shaped. Light streaks have an average azimuth of 218° (corresponding to winds from the northeast), which approximates the orientation of 197 ± 14° for eolian “drifts” observed by the Viking Lander imaging team (Binder et al., 1977). This lends support to the hypothesis that light streaks are deposits of windblown sediments. Dark streaks are oriented at an azimuth of 42° (approximately opposite that of light streaks) and are nearly in line with the dominant wind direction currently recorded by the Viking meteorology instruments (Hess et al., 1977). Although the size of the sample area is not uniform among the various terrain types, the highest frequency of streaks per unit area occurs in the knobby terrain. This is partly explained by the probable production of fine-grained material (weathered from the knobs) to form streaks and other eolian features, and the higher wind turbulence generated around the knobs. The lowest frequency of streaks occurs on the elevated plateaus. The light streaks in Chryse Planitia appear to be relatively stable and to result from deposition of windblown material during times of relatively high velocity northeasterly winds. Dark streaks are more variable and probably result from erosion by southwesterly winds. Both types will be monitored during the extended Viking mission and the results compared with lander data.  相似文献   

18.
Abstract– We examine Martian northern high‐latitude and polar impact craters (NPICs) to better understand the north polar materials and polar processes. We examine topographic characteristics for 346 NPICs and compare them to global fit data (e.g., Garvin et al. 2003 ; Boyce and Garbeil 2007 ) as well as to a small set (N = 92) of southern high‐latitude and polar impact craters (SPICs). We find that the NPIC population above 57° N is significantly shallower than the global crater population. This suggests that the NPICs (1) were initially shallow due to target properties of polar geologic units; (2) were once deeper, but have been infilled due to polar processes; or (3) a combination of both. Indeed, many of the NPICs exhibit considerable noncentral peak interior topographic features (IFTs), which may be indicative of infilling processes. The NPIC IFTs also appear to display trends in their preferential orientation within the crater cavity; some SPICs display similar interior features, but do not show a clear preference in their orientation within the crater cavity. In addition, the NPIC population displays cavity wall slope trends that seem to indicate steepening of slopes with increasing crater diameter in comparison to the global slope trend ( Garvin et al. 2003 ). These trends suggest that the NPICs are unique in their geometry when compared to the global data set as well as with the SPICs further indicating that the north polar region may exhibit target properties and polar processes not seen in the south polar region or elsewhere on Mars.  相似文献   

19.
We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly-layered Rupes Tenuis unit (Abrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. The second major episode of activity during the Middle to Late Amazonian (1 Ga) began with a section of dark, sand-rich and light-toned ice-rich irregularly-bedded sequences (Planum Boreum cavi unit, Abbc) along with deposition of evenly-bedded light-toned ice- and moderate-toned dust-rich layers (Planum Boreum 1 unit, Abb1). These units have transgressive and gradational stratigraphic relationships. Materials in Olympia Planum underlying the dunes of Olympia Undae are interpreted to consist mostly of the Planum Boreum cavi unit (Abbc). Planum Boreum materials were then deeply eroded to form spiral troughs, Chasma Boreale, and marginal scarps that define the major aspects of the polar plateau's current regional topography. Locally- to regionally-extensive (though vertically minor) episodes of deposition of evenly-bedded, light- and dark-toned layered materials and subsequent erosion of these materials persisted throughout the Late Amazonian. Sand saltation, including dune migration, is likely to account for much of the erosion of Planum Boreum, particularly at its margin, alluding to the lengthy sedimentological history of the circum-polar dune fields. Such erosion has been controlled largely by topographic effects on wind patterns and the variable resistance to erosion of materials (fresh and altered) and physiographic features. Some present-day dune fields may be hundreds of kilometers removed from possible sources along the margins of Planum Boreum, and dark materials, comprised of sand sheets, extend even farther downwind. These deposits also attest to the lengthy period of erosion following emplacement of the Planum Boreum 1 unit. We find no evidence for extensive glacial flow, topographic relaxation, or basal melting of Planum Boreum materials. However, minor development of normal faults and wrinkle ridges may suggest differential compaction of materials across buried scarps. Timing relations are poorly-defined mostly because resurfacing and other uncertainties prohibit precise determinations of surface impact crater densities. The majority of the stratigraphic record may predate the recent (<20 Ma) part of the orbitally-driven climate record that can be reliably calculated. Given the strong stratigraphic but loose temporal constraints of the north polar geologic record, a comparison of north and south polar stratigraphy permits a speculative scenario in which major Amazonian depositional and erosional episodes driven by global climate activity is plausible.  相似文献   

20.
Robert M. Haberle 《Icarus》1979,39(2):184-191
The large horizontal heating gradients that exist near the edge of the Martian polar caps during spring are shown to be capable of exciting large oscillations in the diurnal tide. To a lesser extent, the daily mass cycling between cap and atmosphere can also contribute. The calculations which demonstrate this are based on classical tidal theory as applied to the cylindrical coordinate system. This is done to facilitate the representation of the heating function. Results are presented for the horizontal surface winds only. They indicate a circulation at the cap edge somewhat analogous to the smaller scale terrestrial sea breeze. The amplitude of the zonal component is largest and is increased from 1 to 10 m sec?1 by the modeled influence of the polar cap. When coupled with the basic flow these cap-edge tides can produce strong surface winds during spring. Such a mechanism may contribute to the ability of the south polar cap winds to generate the local dust storms observed near the cap edge at this season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号