首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bonnie J. Buratti 《Icarus》1984,59(3):392-405
Photometric analysis of Voyager images of the medium-sized icy satellites of Saturn shows that their surfaces exhibit a wide range of scattering properties. At low phase angles, Rhea and Dione closely follow lunar behavior with almost no limb darkening. Mimas, Tethys, and especially Enceladus shiw significant limb darkening at low phase angles, which suggests multiple scattering is important for their surfaces. A simple photometric function of the form I/F = f(α)0/(μ + μ0) + (1 ? A)μ0 has been fit to the observations. For normal reflectances <0.6, we find lunar-like scattering properties (A = 1). No satellite's surface can be described by Lambert's Law (A = 0). Dione exhibits the widest albedo variations (about 50%). A longitudinal dark stripe which represents a 15% decrease in albedo is situated near the center of the trailing side of Tethys. A correlation is found between the albedo and color of the satellites: the darker objects are redder. Similarly, darker areas of each satellite are redder. Spectral reflectances of Mimas and Enceladus can be derived for the first time. After the proper calibrations to the Voyager color images are made, it is found that both satellites have remarkably flat spectra into the ultraviolet.  相似文献   

2.
The photometric properties of selected surface features on Ganymede and Callisto have been studied using Voyager images over phase angles from 10 to 124° taken with the clear filter (effective wave wavelength ∽0.5 μm). Normal reflectences on Ganymede average 0.35 for the cratered terrain and 0.44 for the grooved terrain. The value for the ubiquitous cratered terrain on Callistro is 0.18. The photometric properties of these regions are described closely by a simple scattering function of the form I = Af(α)μ0/(μ + μ0), where A is a constant, μ is the cosine of the emission angle, μ0 is the cosine of the incidence angle, and f(α) is a function of the phase angle, α, only. For these terrains the shape of f(α) is qualitatively similar to that for the moon—generally concave upward. By contrast, bright craters on both satellites have f(α)'s which are concave downward. The scattering properties of these bright features are definitely not Lambertian, but are described approximately by the scattering law given above. The brightest craters on Callisto have reflectances which are only 10% lower than the brightest craters on Ganymede; both have closely similar scattering laws. We estimate that the brightest craters on Ganymede may reach normal reflectances of 0.7. Our phase functions yield phase integrals of q = 0.8 and 0.6 for Ganymede and Callisto, respectively.  相似文献   

3.
Voyager imaging data demonstrate that the scattering properties (“phase curves”) of all major terrain types on Ganymede and callisto are not significantly wavelength dependent between 0.4 and 0.6 μm. Our data suggest that the phase curves may be slightly steeper at the shorter wavelengths, consistent with the trend of telescopic observations near opposition. However, the differences are small and entirely within the uncertainties of our analysis. Our result indicates that the phase integrals (0.8 for Ganymede and 0.6 for Callisto) derived by S. W. Squyres and J. Veverka [Icarus46, 137–155 (1981)] from the abundant Voyager clear filter observations are reliable measures of the radiometric phase integrals. The corresponding values of the Bond albedo turn out to be 0.35 for Ganymede and 0.11 for Callisto.  相似文献   

4.
B. Buratti  J. Veverka 《Icarus》1984,58(2):254-264
Voyager imaging observations provide new photometric data on Saturn's satellites at large phase angles (up to 133° in the case of Mimas) not observable from Earth. Significant new results include the determination of phase integrals ranging from 0.7 in the case of Rhea to 0.9 for Enceladus. For Enceladus we find an average geometric albedo pv = 1.04 ± 0.15 and Bond albedo of 0.9 ± 0.1. The data indicate an orbital lightcurve with an amplitude of 0.2 mag, the trailing side being the brighter. For Mimas, the lightcurve amplitude is probably less than 0.1 mag. The value of the geometric albedo of Mimas reported here, pv = 0.77 ± 0.15 (corresponding to a mean opposition magnitude V0 = +12.5) is definitely higher than the currently accepted value of about 0.5. For Dione, the Voyager data show a well-defined orbital lightcurve of amplitude about 0.6 mag, with the leading hemisphere brighter than the trailing one.  相似文献   

5.
Voyager images of Iapetus ranging in phase angle from 8 to 90° were used to define the satellite's photometric properties and construct an albedo map of its surface. The images confirm that the albedo distribution has a roughly hemispheric asymmetry, as had been inferred from earlier analyses of the disk-integrated lightcurve. On the darker leading hemisphere albedo contours are roughly elliptical in shape and centered at the apex of orbital motion, flattened at the poles and elongated along the equator. The reflectance within the darker material is lowest (0.02–0.03) at the apex, and increases with increasing distance from the apex. The albedo pattern on the brighter trailing hemisphere is more complex. Reflectance increases gradually with increasing distance from the interface with the darker material, and reaches a maximum near the poles. Reflectances of 0.3–0.4 in the brighter material are common, and the highest values probably reach 0.6. The transition in reflectance contours between the two materials is gradual rather than sharp, and albedo histograms of images centered on the visually perceived boundary are weakly bimodal. The dark material on Iapetus is reddish, the bright material somewhat less so.  相似文献   

6.
One hundred eighty-seven reflectance spectra (0.33–1.10 μm) of the Galilean satellites have been obtained. Solar phase angle color correction coefficients were derived and the spectra corrected to a solar phase of 6°. Solar phase angle coefficients beyond 0.55 μm are presented for the first time. The spectra as a function of orbital phase angle are presented in the form of images to display hemispheric spectral variations. Io and Europa are redder on their trailing hemispheres while Callisto is redder on its leading hemisphere. Ganymede shows small longitudinal color variations despite the complex albedo structure visible in Voyager images. Comparisons of these data with previous measurements reveal that most differences can be attributed to the solar calibration. Reflectance measurements of Io at 0.73 μm observed 8.5 years apart show a 6% global reflectance decrease. However, it is difficult to unambigously attribute this particular decrease in reflectance to a change in Io's surface composition.  相似文献   

7.
Ultraviolet disk-integrated solar phase curves of the icy galilean satellites Europa, Ganymede, and Callisto are presented, using combined data sets from the International Ultraviolet Explorer (IUE), Hubble Space Telescope (HST), and the Galileo Ultraviolet Spectrometer. Global, disk-integrated solar phase curves for all three satellites, in addition to disk-integrated solar phase curves for Europa's leading, trailing, jovian, and anti-jovian hemispheres, are modeled using Hapke's equations for 7 broadband UV wavelengths between 260 and 320 nm. The sparse coverage in solar phase angle, particularly for Ganymede and Callisto, and the noise in the data sets poorly constrain some of the photometric parameter values in the model. However, the results are sufficient for forming a preliminary relationship between the effects of particle bombardment on icy surfaces and photometric scattering properties at ultraviolet wavelengths. Callisto exhibits a large UV opposition surge and a surface comprised of relatively low-backward scattering particles. Europa's surface displays a dichotomy between the jovian and anti-jovian hemispheres (the anti-jovian hemisphere is more backward scattering), while a less pronounced hemispherical variation was detected between the leading and trailing hemispheres. Europa's surface, with the exception of the trailing hemisphere region, appears to have become less backscattering between the late-1970s-early-1980s and the mid-1990s. These results are commensurate with the bombardment history of these surfaces by magnetospheric charged particles.  相似文献   

8.
Voyager full-disk images of Io, available at solar phase angle of α = 2?29° and 101?159°, allow comparisons of the satellite's near-opposition photometric behavior with Earth-based results and the determination of the phase curve out to very high phase angles. The near-opposition data were reduced iteratively for self-consistent phase and rotation curves in each Voyager filter; the resulting phase coefficients, geometric albedos, and rotational lightcurves are consistent with Earth-based findings, except for a previously noted tendency for Voyager to yield somewhat redder spectral information. The derived near-opposition phase coefficients, ranging between 0.016 and 0.024 mag/ deg, decrease with increasing wavelength, a trend weakly noted in some Earth-based observations. The full, α = 2?159° phase curves allow the first direct determination of the phase integral of Io at several wavelengths: q rises from ≈0.7 in the ultraviolet to ≈0.8 in the orange. Combination of the Voyager phase integrals with Earth-based albedo information leads to a best estimate of the bolometric Bond albedo of 0.50 ± 0.10, a value consistent with, but slightly below, previous estimates.  相似文献   

9.
Stereo analysis of images obtained during the 2001 flyby of Comet Borrelly by NASA's Deep Space 1 (DS1) probe allows us to quantify the shape and photometric behavior of the nucleus. The shape is complex, with planar facets corresponding to the dark, mottled regions of the surface whereas the bright, smooth regions are convexly curved. The photometric as well as textural differences between these regions can be explained in terms of topography (roughness) at and below the image resolution, without invoking significant variations in single-particle properties; the material on Borrelly's surface could be quite uniform. A statistical comparison of the digital elevation models (DEMs) produced from the three highest-resolution images independently at the USGS and DLR shows that their difference standard deviation is 120 m, consistent with a matching error of 0.20 pixel (similar to reported matching accuracies for many other stereo datasets). The DEMs also show some systematic differences attributable to manual versus automatic matching. Disk-resolved photometric modeling of the nucleus using the DEM shows that bright, smooth terrains on Borrelly are similar in roughness (Hapke roughness θ=20°) to C-type asteroid Mathilde but slightly brighter and more backscattering (single-scattering albedo w=0.056, Henyey-Greenstein phase parameter g=−0.32). The dark, mottled terrain is photometrically consistent with the same particles but with roughnesses as large as 60°. Intrinsically darker material is inconsistent with the phase behavior of these regions. Many local radiance variations are clearly related to topography, and others are consistent with a topographic explanation; one need not invoke albedo variations greater than a few tens of percent to explain the appearance of Borrelly.  相似文献   

10.
The interaction of corotating iogenic plasma with the surface of Europa in light of recent ice sputtering, experimental results, and published Voyager data has been examined. It has been found that the residual atmosphere of Europa is made up of sputtered molecular oxygen and is exospheric from the surface outwards. It was also found that if sputtering, redistribution, and escape are considered and the sulfur dioxide/water mixing ratio is held constant over a UV observing depth, the observed sulfur dioxide density on the trailing hemisphere lends support to the hypothesis that liquid water from the interior of Europa is boiling out and being deposited as a frost layer on the surface at the rate of about 0.04 μm/year.  相似文献   

11.
The preliminary measurements by Pioneer 11 of the limb darkening and polarization of Titan at red and blue wavelenghts (M. G. Tomasko, 1980,J. Geophys. Res., 85, 5937–5942) are refined and the measurements of the brightness of the integrated disk at phase angles from 22 to 96° are reduced. At 28° phase, Titan's reflectivity in blue light at southern latitudes is as much as 25% greater than that at northern latitudes, comparable to the values observed by Voyager 1 (L. A. Sromovsky et al., 1981,Nature (London), 292, 698–702). In red light the reflectivity is constant to within a few percent for latitudes between 40°S and 60°N. Titan's phase coefficient between 22 and 96° phase angle averages about 0.014 magnitudes/degree in both colors—a value considerably greater than that observed at smaller phase from the Earth. Comparisons of the data with vertically homogeneous multiple-scattering models indicate that the single-scattering phase functions of the aerosols in both colors are rather flat at scattering angles between 80 and 150° with a small peak at larger scattering (i.e., small phase) angles. The models indicate that the phase integral, q, for Titan in both red and blue light is about 1.66 ± 0.1. Together with Younkin's value for the bolometric geometric albedo scaled to a radius of 2825 km, this implies an effective temperature in equilibrium with sunlight of 84 ± 2°K, in agreement with recent thermal measurements. The single-scattering polarizations produced by the particles at 90° scattering angle are quite large, >85% in blue light and >95% in red. A vertically homogeneous model in which the particles are assumed to scatter as spheres cannot simultaneously match the polarization observations in both colors for any refractive index. However, the observed polarizations are most sensitive to the particle properties near optical depth 12 in each color, and so models based on single scattering by spheres can be successful over a range of refractive indices if the size of the particles increases with depth and if the cross section of the particles increases sufficiently rapidly with decreasing wavelenght. For example, with nr = 1.70, the polarization (and the photometry) are reproduced reasonably well in both colors when the area-weighted average radous of the particles, α, is given by α = (0.117 μm)(τred/0.5)0.217. While this model does not reproduce the large increase in brightness from 129 to 160° phase observed by Voyager 1, the observed increase is determined by the properties of the particles in the top few hundredths of an optical depth. Thus the addition of a very thin layer of forward-scattering aerosols on top of the above model offers one way of satisfying both the Pioneer 11 and Voyager 1 observations. Of course, other models, using bimodal size distributions or scattering by nonspherical particles, may also be capable of reproducing these data.  相似文献   

12.
Michael J. Price 《Icarus》1977,30(4):760-768
Visual photometric function data for Saturn's rings are analyzed in terms of elementary anisotropic scattering radiative transfer models which involve the Henyey-Greenstein function. Limits are placed on the combinations of single scattering albedo and backscattering directivity which are permitted by observation. Particles with both microscopic and macrscopic lunar-like scattering properties are excluded by the analysis. Results are consistent with the ring particles being nearly pure spherical conglomerates of H2O frost.  相似文献   

13.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

14.
《Icarus》1986,68(1):167-175
Observatios of Phoebe (S9) in the V filter at small solar phase angles (0.2° to 1.2°) with the MIT SNAPSHOT CCD are presented. The value of Phoebe's sideral rotational period is refined to 9.282 ± 0.015hr. Assuming the Voyager-derived 110 km radius, Phoebe's observed mean opposition V magnitude of 16.176 ± 0.033 (extrapolated from small angles) corresponds to a geometric albedo of 0.084 ± 0.003. A strong opposition effect is indicated by the 0.180 ± 0.035 mag/deg solar phase coefficient observed at these small phase angles. The data are shown to be compatible with a phase function for C-type asteroids (K. Lumme and E. Bowell, 1981, Astron. J. 86, 1705–1721; K. Lumme, E. Bowell, and A. W. Harris, 1984, Bull. Amer. Astron. Soc. 16, 684), but give a poorer fit to the average asteroid phase relation of T. Gehrels and E.F. Tedesco (1979, Astron. J. 84, 1079–1087). Phoebe's rotational lightcurve in the V filter is roughly sinusoidal, with a 0.230-mag peak-to-peak amplitude and weaker higher order harmonics indicating primarily bimodal surface feature contrast. In addition to these photometric results, precise positions on 3 nights are given.  相似文献   

15.
《Icarus》1987,69(2):280-296
This paper presents some Voyager observations of the azimuthal brightness variations in Saturn's ring A. Measurements in reflected light are in general agreement with Earth-based studies. The unique contribution of Voyager—images of the rings in light transmitted through them—shows the brightness variations also to be present, but they have a decidedly greater amplitude and differ in phase by ∼65° from those seen in reflexion. The photometric behavior on both sides can probably be qualitatively explained by the extensive presence of particle wakes in ring A.  相似文献   

16.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   

17.
J Oberst  B Giese  R Kirk  B Buratti  R Nelson 《Icarus》2004,167(1):70-79
Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties.  相似文献   

18.
Photometric observations of Jupiter’s moons Io and Europa in the spectral band V have been made at the Crimean Astrophysical Observatory for four years in order to construct their light curves reduced to a Solar phase angle of 6°. Comparison of these data with other ground-based observations shows good agreement. This study confirms why the moons that are close to Jupiter have a brighter leading hemisphere. The trailing hemispheres of Io and Europa, which are located in the rapidly rotating magnetic field of Jupiter, are exposed to bombardment by charged particles of the magnetic field. Leaving out of consideration the differences in brightness between the two hemispheres results in serious discrepancies between the space and ground-based photometry data.  相似文献   

19.
Bonnie J. Buratti 《Icarus》1985,61(2):208-217
A radiative transfer model, derived largely from the work of B.W. Hapke (1981, J. Geophys. Res.86, 3039–3054) and J.D. Goguen (1981, Ph.D. thesis, Cornell University, Ithaca, N.Y.), is fit to Voyager imaging observations of Europa, Mimas, Enceladus, and Rhea. It is possible to place constraints on the single-scattering albedo, the porosity of the optically active upper regolith, the single-particle phase functions, and, in the cases of Europa and Mimas, the mean slope angle of macroscopic surface features. The texture of the surfaces of the Saturnian satellites appears to be similar to the Earth's moon. However, Europa is found to have a distinctly more compact regolith and a more forward-scattering single-particle phase function.  相似文献   

20.
Hubble Space Telescope (HST) Wide-Field Planetary Camera (WFPC2) observations at phase angles in the range α=0.26°-6.4° obtained at every opposition and near quadrature between October 1996 and December 2002 reveal the opposition effect of Enceladus. We present a photometric analysis of nearly 200 images obtained through the five broadband UVBRI filters (F336W, F439W, F555W, F675W, and F814W) and the F785LP and F1042M filters from which we generate mutually consistent solar and rotational phase curves. Our solar phase curves reveal a dramatic, sharp increase in the albedo (from 0.11 mag in the F675W filter to 0.17 mag in the F785LP filter) as phase angles decrease from 2° to 0.26°. A slight opposition effect is evident in data from the F1042M filter (λeff=1022 nm); however, the smallest phase angle currently available for observations from this filter is α=0.58°. With the addition of data from the F255W filter we demonstrate the wavelength dependence of the albedo of the trailing hemisphere from 275 to 1022 nm. Our rotation curves show that the trailing hemisphere is ∼0.06 mag brighter than the leading when observed at wavelengths between 338 and 868 nm and 0.11 mag brighter than the leading at 1022 nm. We have supplemented the phase curve from the F439W filter (λeff=434 nm) with Voyager clear filter (λeff=480 nm) observations made at larger phase angles (α=13°-43°) to produce a phase curve with the most extensive phase angle coverage possible to date. This newly expanded range of phase angles enhances the ability of the Hapke photometric model (Hapke B., 2002, Icarus 157, 523-534) to relate physical characteristics of the surface of Enceladus to the manner in which incident light is reflected from it. We present Hapke 2002 model fits to solar phase curves from each UVBRI filter as well as from the F785LP and F1042M filters. Geometric albedos derived from these model fits range from p=0.92±0.01 at 1022 nm to p=1.41±0.03 at 549 nm, necessitating an increase of about 20% from previously derived values. Our Hapke fits demonstrate that the opposition surge of Enceladus is best described by a model which combines both moderate shadow-hiding and narrow coherent backscattering components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号