首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We review existingsingle-particle theories concerning parameters of importance which determine the kinetics of hydrogen molecule formation and ejection from cold (T gr?20K) graphite grain surfaces. The nature of thesingle-particle quantum states of low mass gas atoms and molecules in a periodic surface lattice potential is considered. Contributions to the physical adsorption potential due to dynamic polarizability effects arising from thelong-range collective valence-electron charge-density oscillations (plasmons) of the substrate are discussed.Short-range electron correlation effects at the surface may lead to the formation of a ‘quasimolecular state’ of adsorbed H2 with a bond length ~3.5 Å and a reduced bond energy ~0.075 eV. It is proposed, that one consequence of this dynamical screening of the adsorbed molecules is that they are ejected normal to the grain surface with velocities ?20 km s?1 and not necessarily in a high vibrational state. Similar dynamical effects could be important in determining activation processes and long-range ordering in monolayer films of adsorbed H2. The astrophysical consequences of thesemany-body effects are discussed in the light of recent experimental and observational results.  相似文献   

2.
We present a numerical method that incorporates particle sticking in simulations using the N-body code pkdgrav to study motions in a local rotating frame, such as a patch of a planetary ring. Particles stick to form non-deformable but breakable aggregates that obey the (Eulerian) equations of rigid-body motion. Applications include local simulations of planetary ring dynamics and planet formation, which typically feature hundreds of thousands or more colliding bodies. Bonding and breaking thresholds are tunable parameters that can approximately mimic, for example, van der Waals forces or interlocking of surface frost layers. The bonding and breaking model does not incorporate a rigorous treatment of internal fracture; rather the method serves as motivation for first-order investigation of how semi-rigid bonding affects the evolution of particle assemblies in high-density environments.We apply the method to Saturn’s A ring, for which laboratory experiments suggest that interpenetration of thin, frost-coated surface layers may lead to weak cohesive bonding. These experiments show that frost-coated icy bodies can bond at the low impact speeds characteristic of the rings. Our investigation is further motivated by recent simulations that suggest a very low coefficient of restitution is needed to explain the amplitude of the azimuthal brightness asymmetry in Saturn’s A ring, and the hypothesis that fine structure in Saturn’s B ring may in part be caused by large-scale cohesion.This work presents the full implementation of our model in pkdgrav, as well as results from initial tests with a limited set of parameters explored. We find a combination of parameters that yields aggregate size distribution and maximum radius values in agreement with Voyager data for ring particles in Saturn’s outer A ring. We also find that the bonding and breaking parameters define two strength regimes in which fragmentation is dominated either by collisions or other stresses, such as tides. We conclude our study with a discussion of future applications of and refinements to our model.  相似文献   

3.
The optical flash accompanying GRB 990123 is believed to be powered by the reverse shock of a thin shell. With the best-fit physical parameters for GRB 990123 and the assumption that the parameters in the optical flash are the same as in the afterglow, we show that: 1) the shell is thick rather than thin, and we have provided the light curve for the thick shell case which coincides with the observation; 2) the theoretical peak flux of the optical flash accounts for only 3×10~-4 of the observed. In order to remove this discrepancy, the physical parameters, the electron energy and magnetic ratios, εe and εB, should be 0.61 and 0.39, which are very different from their values for the late afterglow.  相似文献   

4.
Calculation of stationary distributions of the most important plasma parameters (particle energy, density, field-aligned and transversal pressure) is performed for a model magnetotail plasma sheet which is formed by convecting plasma mantle particles injected into the closed geomagnetic field line tubes. Computations have been done for two convection models: (i) a model of completely adiabatic particle motion with conservation of the first two invariants and (ii) a model with a strong pitch-angle diffusion which maintains isotropy. It is found that in both cases the heating and compression of the plasma are somewhat more effective than is necessary to account for the observed gradients of magnetic field in the magnetospheric tail. A leakage of accelerated particles through the dawn and dusk edges of the plasma sheet is proposed as a possible mechanism for maintenance of stationary convection in the magnetotail. The question of the dependence of the stationary magnetotail parameters on the solar wind state is discussed briefly.  相似文献   

5.
The Advanced Space-based Solar Observatory(ASO-S) mission aims to explore the two most spectacular eruptions on the Sun: solar flares and coronal mass ejections(CMEs), and their magnetism.For the study of CMEs, the payload Lyman-alpha Solar Telescope(LST) has been proposed. It includes a traditional white-light coronagraph and a Lyman-alpha coronagraph which opens a new window to CME observations. Polarization measurements taken by white-light coronagraphs are crucial for deriving fundamental physical parameters of CMEs. To make such measurements, there are two options for a Stokes polarimeter which have been applied by existing white-light coronagraphs for space missions. One uses a single or triple linear polarizer, the other involves both a half-wave plate and a linear polarizer. We find that the former option is subject to less uncertainty in the derived Stokes vector propagating from detector noise.The latter option involves two plates which are prone to internal reflections and may have a reduced transmission factor. Therefore, the former option is adopted as our Stokes polarimeter scheme for LST. Based on the parameters of the intended linear polarizer(s) colorPol provided by CODIXX and the half-wave plate 2-APW-L2-012 C by Altechna, it is further shown that the imperfect maximum transmittance of the polarizer significantly increases the variance amplification of Stokes vector by at least about 50% when compared with the ideal case. The relative errors of Stokes vector caused by the imperfection of colorPol polarizer and the uncertainty due to the polarizer assembly in the telescope are estimated to be about 5%. Among the considered parameters, we find that the dominant error comes from the uncertainty in the maximum transmittance of the polarizer.  相似文献   

6.
We obtained the physical and geometrical parameters of the EW Boo system, which exhibits short period and small amplitude pulsations as well as brightness variations due to orbital motion of components. Towards this end we carried out photometric observations at Ankara University Kreiken Observatory (AUKO) as well as spectroscopic observations at TUBITAK National Observatory (TNO). The light and radial velocity curves obtained from these observations have been simultaneously analyzed with PHOEBE and the absolute parameters of the system along with the geometric parameters of the components have been determined. Using model light curves of EW Boo, light curve regions in which the pulsations are active have been determined and as a result of analyses performed in the frequency region, characteristic parameters of pulsations have been obtained. We find that the results are compatible with current parameters of similar systems in the literature. The evolutionary status of the components is propounded and discussed.  相似文献   

7.
The moment method is a well known technique, which uses a time series ofthe first 3 moments of a spectral line, to estimate the (discrete) modeparameters and m. The method, contrary to Doppler imaging,also yields other interesting(real-valued) parameters such as the inclination angle i, or v sin i,during its identification procedure.In this paper, we are not only interested in the estimation of thesereal-valued parameters themselves but also inreliable estimates for their uncertainty.We designed a statistical formalism for the moment method based on theso-called generalized estimating equations (GEE). This formalismaims to estimate the uncertainty of the real-valued parameters taking intoaccount that the different moments of a line profile are correlated and –more importantly – that the uncertainty of the observed moments depends onthe pulsation parameters. The latter property of the moment method makesthe least-squares technique a poor choice to estimate the uncertainty ofthe real-valued parameters. We implemented the GEE method and presentan application to a high-resolution spectroscopic dataset of the slowly pulsating B star HD181558.  相似文献   

8.
We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface frost layers.Our investigation is motivated by laboratory results that show that interpenetration of surface layers can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings. Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion parameters in light of existing ring observations, to make predictions about particle populations throughout the rings, and to discover other diagnostics that may constrain bonding parameters.We considered the effects of five parameters on the equilibrium characteristics of our ring simulations: speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital distance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we present data from 95 simulations.We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that reproduce the observed size distribution and maximum particle size. It turns out that the parameters that match observations differ between the A and B rings, and we discuss the potential implications of this result. We also comment on other observable consequences of cohesion for the rings, such as optical depth and scale height effects, and discuss whether very large objects (e.g., “propeller” source objects) are grown bottom-up from cohesion of smaller ring particles.  相似文献   

9.
Saturn's moon Titan has been considered as one of the few places in our Solar System, where atmospheric and surface conditions could have produced organic compounds essential as precursors for an evolution of life. The Cassini-Huygens mission has provided new data on Titan's atmosphere and surface, which enabled us to simulate the chemical processes occurring under these conditions. Possible lightning events on Titan cannot only produce higher hydrocarbons, but also allow surface water ice to participate in the reaction scenario, resulting in CHO, CHN, and CHON compounds including several molecules relevant for the formation of amino acids and nucleic acids.  相似文献   

10.
Correlations are investigated between the pattern of solar activity described by the smoothed monthly relative sunspot numbers (Wolf numbers) near the minimum of a solar cycle and the cycle amplitude. The closest correlation is found between the amplitude of a solar cycle and the sum of the decrease in activity over two years prior to the cycle minimum and the increase in activity over two years after the minimum; the correlation coefficient between these parameters is 0.92. This parameter is used as a precursor to predict the amplitude of solar cycle 24, which is expected to reach its maximum amplitude (85 ± 12) in February 2014. Based on the correlations between the mean parameters of solar cycles, cycle 24 is expected to last for approximately 11.3 years and the minimum of the next cycle 25 is predicted for May 2020.  相似文献   

11.
We present a homogeneous set of stellar atmospheric parameters ( T eff, log  g , [Fe/H]) for a sample of about 700 field and cluster stars which constitute a new stellar library in the near-IR developed for stellar population synthesis in this spectral region ( λ 8350–9020) . Having compiled the available atmospheric data in the literature for field stars, we have found systematic deviations between the atmospheric parameters from different bibliographic references. The Soubiran, Katz & Cayrel sample of stars with very well determined fundamental parameters has been taken as our standard reference system, and other papers have been calibrated and bootstrapped against it. The obtained transformations are provided in this paper. Once most of the data sets were on the same system, final parameters were derived by performing error weighted means. Atmospheric parameters for cluster stars have also been revised and updated according to recent metallicity scales and colour–temperature relations.  相似文献   

12.
We review our recent results on the vacuum ultraviolet (VUV) photochemistry of small biomolecules. The experimental techniques used, mass spectrometry and photofragment fluorescence spectroscopy, are described. Emphasis is laid on our mass spectrometric results obtained for five nucleic acid bases and five amino acids. Ionisation and appearance energies are determined from photoionisation mass spectrometry, many for the first time. From this, fragmentation pathways following 6-22 eV photoexciation are derived. The adiabatic ionisation energies of the biomolecules studied lie between 8.2 eV (adenine) and 9.6 eV (α-amino-isobutyric acid). We show that the nucleic acid monocations, and chemically related molecular cations, do not fragment even when formed with large internal energies (Eint) ranging from 1.80 to 5.35 eV. In contrast, amino acid monocations are unstable and rapid fragmentation occurs via rupture of the CC(OOH) bond, except for β-alanine, where rupture of the bond between the α-C and β-C is the lowest lying ionic dissociation channel. The VUV photochemistry of the prebiotic species formic acid, acetic acid and methylformate, studied in more detail previously by several techniques, including fluorescence spectroscopy, is also reviewed. Astrophysical implications of our work are discussed in the conclusion.  相似文献   

13.
New determination of the Earth orientation parameters (EOP), based on optical astrometry observations since the beginning of the century, is now under preparation by the Working group established by Commission 19 of the IAU. The Hipparcos catalog is to define the celestial reference frame in which the new series of EOP are to be described, The novelties of the prepared solution are the higher resolution (5 days) and more parameters estimated from the solution (celestial pole offsets, rheological parameters of the Earth, certain instrumental constants). The mathematical model of the solution is described, and the results based on the observations made with 46 instruments at 29 observatories and a preliminary Hipparcos catalog are presented.  相似文献   

14.
A stochastic prediction model for the sunspot cycle is proposed. The prediction model is based on a modified binary mixture of Laplace distribution functions and a moving-average model over the estimated model parameters. A six-parameter modified binary mixture of Laplace distribution functions is used for the modeling of the shape of a generic sunspot cycle. The model parameters are estimated for 23 sunspot cycles independently, and the primary prediction-model parameters are derived from these estimated model parameters using a moving-average stochastic model. A correction factor (hump factor) is introduced to make an initial prediction. The hump factor is computed for a given sunspot cycle as the ratio of the model estimated after the completion of a sunspot cycle (post-facto model) and the prediction of the moving-average model. The hump factors can be applied one at a time over the moving-average prediction model to get a final prediction of a sunspot cycle. The present model is used to predict the characteristics of Sunspot Cycle 24. The methodology is validated using the previous Sunspot Cycles 21, 22, and 23, which shows the adequacy and the applicability of the prediction model. The statistics of the variations of sunspot numbers at high solar activity are used to provide the lower and upper bound for the predictions using the present model.  相似文献   

15.
Bayesian model selection provides a formal method of determining the level of support for new parameters in a model. However, if there is not a specific enough underlying physical motivation for the new parameters it can be hard to assign them meaningful priors, an essential ingredient of Bayesian model selection. Here we look at methods maximizing the prior so as to work out what is the maximum support the data could give for the new parameters. If the maximum support is not high enough then one can confidently conclude that the new parameters are unnecessary without needing to worry that some other prior may make them significant. We discuss a computationally efficient means of doing this which involves mapping p-values on to upper bounds of the Bayes factor (or odds) for the new parameters. A p-value of 0.05 (1.96σ) corresponds to odds less than or equal to 5:2, which is below the 'weak' support at best threshold. A p-value of 0.0003 (3.6σ) corresponds to odds of less than or equal to 150:1, which is the 'strong' support at best threshold. Applying this method we find that the odds on the scalar spectral index being different from one are 49:1 at best. We also find that the odds that there is primordial hemispherical asymmetry in the cosmic microwave background are 9:1 at best.  相似文献   

16.
The suggestion is explored that the two-stream instability has little effect on the propagation of the electron streams which generate type III bursts because the time required (ti) for development of the instability is comparable with or greater than the time available (Δt) for growth of the waves. Inferred parameters for streams in the corona and measured parameters for streams at the orbit of the Earth are compatible with this suggestion. Quasi-linear relaxation, which should occur as the stream forms, ensures that equality ti = Δt is set up initially, and restricts the number of escaping electrons to N s ≈ 1031. The minimum density requirement on the stream for the two-stream instability to occur is found to be much less restrictive than the requirement that there should be many streaming electrons per Debye sphere.  相似文献   

17.
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft has made numerous measurements of the Martian surface and subsurface. However, all of these measurements are distorted by the ionosphere and must be compensated before any analysis. We have developed a technique to compensate for the ionospheric distortions. This technique provides a powerful tool to derive the total electron content (TEC) and other higher-order terms of the limited expansion of the plasma dispersion function that are related to overall shape of the electron column profile. The derived parameters are fitted by using a Chapman model to derive ionospheric parameters like n0, electron density primary peak (maximum for solar zenith angle (SZA) equal 0), and the neutral height scale H.

Our estimated ionospheric parameters are in good agreement with Mars Global Surveyor (MGS) radio-occultation data. However, since MARSIS does not have the observation geometry limitations of the radio occultation measurements, our derived parameters extend over a large range of SZA for each MEX orbit.

The first results from our technique have been discussed by Safaeinili et al. [2007, Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204, doi:10.1029/2007GL032154].  相似文献   


18.
Abstract– The molecular structure of the insoluble organic matter (IOM) from Murchison meteorite has been investigated by our group for several years using a large set of analytical methods including various spectroscopies (Fourier transform infrared spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, X‐ray absorption near‐edge spectroscopy), high resolution electron microscopy, and thermal (pyrolyses in the presence or not of tetramethylammonium hydroxide) and chemical (RuO4 oxidation) degradations. Taken together, these techniques provided a wealth of qualitative and quantitative information, from which we derived 11 elemental and molecular parameters on the same IOM residue. In addition to the basic elemental composition, these parameters describe the distribution of the different types of carbon, nitrogen, and sulfur atoms as well as the size of the polyaromatic units. For this molecular structure, we therefore propose a model which fits with these 11 molecular quantitative parameters. Several cosmochemical implications are derived from this structure. Based on the fact that aromatic moieties are highly substituted and aliphatic chains highly branched, it can be anticipated that the synthesis of this IOM occurred through successive additions of single carbon units in the gas‐phase ending by a spontaneous cyclization for chain length ≥7 C. As a whole, these observations favor an organosynthesis in the solar T‐Tauri disk.  相似文献   

19.
We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z , age log(t)=8.95, distance modulus (m - M)0 = 10.34 and reddening value E(B -V) = 0.55 mag.  相似文献   

20.
同步+同步自康普顿(Synchrotron+Synchrotron Self Compton (SSC))模型用于拟合蝎虎天体(BL Lac object, BL Lac)准同时性多波段观测数据,可以获得相关的喷流物理参数,从而能对BL Lac天体喷流的物理性质进行解释.在同步自康普顿模型中,较多的自由参数给计算结果带来很大的不确定性,同时,由于这些模型参数范围太大降低了能谱拟合效率.利用多波段观测数据获得的物理量值,对双幂律电子分布情况下的单区、均匀SSC模型中涉及到的8个模型参数进行限定.另外,还利用模型计算两个典型的BL Lac天体多波段能谱对参数限定的结果进行检验.结果表明:在8个模型参数限定的范围内,选取的模型参数值计算出的理论光子谱与两个BL Lac天体的多波段准同时性观测数据符合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号