首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heating occurs in Titan's stratosphere from the absorption of incident solar radiation by methane and aerosols. About 10% of the incident sunlight reaches Titan's surface and causes heating there. Thermal radiation redistributes heat within the atmosphere and cools to space. The resulting vertical temperature profile is stable against convection and a state of radiative equilibrium is established. Equating theoretical and observed temperature profiles enables an empirical determination of the vertical distribution of thermal opacity. A uniformly mixed aerosol is responsible for most of the opacity in the stratosphere, whereas collision-induced absorption of gases is the main contributor in the troposphere. Occasional clouds are observed in the troposphere in spite of the large degrees of methane supersaturation found there. Photochemistry converts CH4 and N2 into more complex hydrocarbons and nitriles in the stratosphere and above. Thin ice clouds of trace organics are formed in the winter and early spring polar regions of the lower stratosphere. Precipitating ice particles serve as condensation sites for supersaturated methane vapor in the troposphere below, resulting in lowered methane degrees of supersaturation in the polar regions. Latitudinal variations of stratospheric temperature are seasonal, and lag instantaneous response to solar irradiation by about one season for two reasons: (1) an actual instantaneous thermal response to a latitudinal distribution of absorbing gases, themselves out of phase with the sun by about one season, and (2) a sluggish dynamical response of the stratosphere to the latitudinal transport of angular momentum, induced by radiative heating and cooling. Mean vertical abundances of stratospheric organics and aerosols are determined primarily by atmospheric chemistry and condensation, whereas latitudinal distributions are more influenced by meridional circulations. In addition to preferential scavenging by precipitating ice particles from above, the polar depletion of supersaturated methane results from periodic scavenging by short-lived tropospheric clouds, coupled with the steady poleward march of the continuously drying atmosphere due to meridional transport.  相似文献   

2.
The formation of methylamine (CH3NH2) in the upper troposphere and lower stratosphere of Jupiter is investigated. Translationally hot hydrogen atoms are produced in the photolysis of ammonia, phosphine, and acetylene which react with methane to produce methyl (CH3) radicals; the latter recombine with NH2 to form CH3NH2. Also, methane is catalytically dissociated to CH3 + H by the species C2 and C2H produced in the photolysis of acetylene. It is shown that the combined production of CH3NH2 and subsequent photolysis to HCN is unlikely to account for the HCN observed near Jupiter's tropopause. Recombination of NH2 and C2H5N followed by photolysis to HCN is the preferred path. Production of C2H6 by these two processes is negligible in comparison to the downward flux of C2H6 from the Lyman α photolysis region of CH4. An upper limit column density on CH3PH2 is estimated to be ~1013 cm?2 as compared to 1015 cm?2 for CH3NH2. Hot H atoms account for a negligible fraction of the total ortho-para conversion by the reaction H + H2  相似文献   

3.
We have studied the possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2CH4H2 Titan model atmosphere. The cosmic-ray-induced ionization results in peak electron densities of 2 × 103 cm?3, with NH4+, C3H9+, and C4H9+ being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.  相似文献   

4.
L. Wallace 《Icarus》1975,25(4):538-544
Uranus has an effective temperature close to the solar equilibrium value and undoubtedly a thermal inversion of at least 140 K at a pressure of ~3 dyncm?2. With the inversion and the thermal opacity provided by a HeH2 mixture in a ratio close to solar abundance, acceptable agreement can be achieved with the available infrared observations. The cause of the inversion is, however, uncertain. The use of the HeH2 opacity for Uranus is justified by the excellent agreement of the frequency variation of that opacity with the thermal spectrum of Jupiter.  相似文献   

5.
A model is presented for the formation of HCN in the upper troposphere and lower stratosphere of Jupiter by ultraviolet photolysis of the C2H5N isomer aziridine, a product of the recombination of NH2 and C2H3 radicals, which originate, respectively, from ammonia photolysis and addition of H atoms to acetylene. An HCN column density of ~ 2 × 1017 cm?2 in the tropopause region, which is comparable to that observed by A. T. Tokunaga, S. C. Beck, T. R. Geballe, J. H. Lacy, and E. Serabyn (Icarus48, 283–289, 1981), is predicted when vertical mixing is slow above the ammonia cloudtops. Sensitivity of the HCN column density to the individual rate constants and the eddy diffusion coefficient profile is discussed, as is the possibility of the existence of additional HCN-yielding pathways. Ammonia, which is saturated in the upper troposphere, is strongly depleted by photolysis in the lower stratosphere. Phosphine is also strongly depleted by photolysis and its abundance in the upper troposphere is shown to depend strongly on vertical mixing in the tropopause region. The possibility of the formation of phosphirane, the P-containing analog of aziridine, is considered but found to be substantially less probable than aziridine.  相似文献   

6.
W. Macy 《Icarus》1980,41(1):153-158
Matching computed spectra for the ν4 band of methane, the ν9 band of ethane, and the R branch of the ν5 band of acetylene to observed spectra for Neptune suggests mixing ratios of CH4/H2 ~ 10?3?10?2, C2H6/H2 ~ 10?6, and C2H2/H2 ~ 10?8 in the stratosphere.  相似文献   

7.
Michael J. Price 《Icarus》1978,35(1):93-98
Measurements of limb brightening on the Uranus disk within the λ7300 Å CH4 band are interpreted using an elementary inhomogeneous radiative transfer model to describe the atmosphere. A two layer model which consists of a finite, optically thin, region of conservatively scattering particles overlying a semi-infinite clear H2CH4 atmosphere satisfactorily explains the observations. The maximum optical thickness of the upper layer appears to lie in the range 0.1 to 0.2. The CH4/H2 mixing ratio in the lower layer is larger than the corresponding solar value by a factor on the order of three or greater. The results are discussed briefly in terms of current models of the Uranus atmosphere.  相似文献   

8.
A model is presented for the photochemistry of PH3 in the upper troposphere and lower stratosphere of Saturn that includes the effects of coupling with NH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH4. PH3 is rapidly depleted with altitude (scale height ~35 km) in the upper troposphere when K~104cm2sec?1; an upper limit for K at the tropopause is estimated at ~105cm2sec?1. If there is no gas phase P2H4 because of sublimation, P2 and P4 formation is unlikely unless the rate of the spin-forbidden recombination reaction PH + H2 + M → PH3 + M is exceedingly slow. An upper limit P4 column density of ~2×1015cm?2 is estimated in the limit of no recombination. If sublimation does not remove all gas phase P2H4, P2 and P4 may be produced in potentially larger quantities, although they would be restricted almost entirely to the lowest levels of our model, where T?100°K. Potentially observable amounts of the organophosphorus compounds CH3P2H2 and HCP are predicted, with column densities of >1017 cm?2 and production rates of ~2×108cm?2sec?1. The possible importance of electronically excited states of PHx and additional PH3/hydrocarbon photochemical coupling paths are also considered.  相似文献   

9.
The methane abundance in the lower Jovian stratosphere is measured using Galilean satellite eclipse light curves. Spectrally selective observations in and between absorption bands are compared. An average mixing ratio at the locations measured is [CH4]/[H2] ~ 1.3 × 10?3, larger than the value 0.9 × 10?3 expected for a solar abundance of carbon. Some zenographic variation of the mixing ratio may occur. Observationally compatible values are 1.3–2.0 × 10?3 in the STZ, 1.3– 2.6 × 10?3 on the GRS/STrZ edge, and 0.7–1.3 × 10?3 in the GRS.  相似文献   

10.
Darrell F. Strobel 《Icarus》2008,193(2):612-619
Hydrodynamic escape of N2 molecules from Pluto's atmosphere is calculated under the assumption of a high density, slow outflow expansion driven by solar EUV heating by N2 absorption, near-IR and UV heating by CH4 absorption, and CO cooling by rotational line emission as a function of solar activity. At 30 AU, the N2 escape rate varies from in the absence of heating, but driven by an upward thermal heat conduction flux from the stratosphere, for lower boundary temperatures varying from 70-100 K. With solar heating varying from solar minimum to solar maximum conditions and a calculated lower boundary temperature, 88.2 K, the N2 escape rate range is , respectively. LTE rotational line emission by CO reduces the net solar heat input by at most 35% and plays a minor role in lowering the calculated escape rates, but ensures that the lower boundary temperature can be calculated by radiative equilibrium with near-IR CH4 heating. While an upward thermal conduction heat flux at the lower boundary plays a fundamental role in the absence of heating, with solar heating it is downward at solar minimum, and is, at most, 13% of the integrated net heating rate over the range of solar activity. For the arrival of the New Horizons spacecraft at Pluto in July 2015, predictions are lower boundary temperature, T0∼81 K, and N2 escape rate , and peak thermospheric temperature ∼103 K at 1890 km, based on expected solar medium conditions.  相似文献   

11.
A radiative seasonal model which incorporates a multilayer radiative transfer treatment at wave-lengths longward of 7 μm is presented and applied to Saturn's stratosphere. Opacities due to H2-He, CH4, C2H2, and C2H6 are included. Season-dependent insolation is shown to produce a strong hemispheric asymmetry decreasing with depth at the Voyager encounter times, and seasonal amplitudes of 30°K at the poles are predicted in the high stratosphere. The ring-modulated dependence of the insolation and the orbital eccentricity are shown to have a significant effect. Calculations agree closely with the Voyager 1 and 2 radio occultation ingress profiles recorded at 76°S and 36.5°S for CH4/H2 = 3.5 + 1.4/? 1.0 × 10?3;the estimated errors include modeling systematic errors and uncertainties in the occultations profiles. The possible role of aerosols in the stratospheric heating is analyzed. The Voyager 2 egress profile recorded at 31°S cannot be reproduced by calculations. Some constraints on the C2H2 and C2H6 abundances are derived. The upper portion of the occultation profiles (p < 3mbar) can be matched for C2H2/H2 = 1.0 + 1.3/?0.6 × 10?7, C2H6/H2 = 1.5 + 1.8/?0.9 × 10?6 at 76°S and C2H2/H2 = 4 + 6/?4 × 10?8, C2H6/H2 = 6 + 9/?6 × 10?7 at 36.5°N. At the northern occultation latitude, the discrepancy with the concentrations derived from analysis of IRIS spectra by R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984, Astrophys. J.287) can be explained by a sharp variation of the mixing ratios of these gases with altitude in the upper stratosphere. Other interpretations are discussed.  相似文献   

12.
Photoionization of the upper atmosphere of Titan by sunlight is expected to produce a substantial ionospheric layer. We have solved one-dimensional forms of the mass, momentum, and energy conservation equations for ions and electrons and have obtained electron number densities of about 103 cm?3, using various model atmospheres. The significant ions in a CH4H2 atmosphere are H+, H3+, CH5+, CH5+, CH3+, and C2H5+. Electron temperatures may be as high as 1000°K, depending on the abundance of hydrogen in the high atmosphere. Interaction of the solar wind with the ionosphere is also discussed.  相似文献   

13.
The temperature distributions in cometary atmospheres at various heliocentric distances for comets of Bennett and Encke types have been calculated by taking into account heating due to the absorption of solar ultraviolet radiation, cooling by H2O far infrared emission, and various dynamical processes (expansion, advection, and thermal conduction). The agreement of the results with the observations is in general satisfactory. The conversion of CH4 and NH3 to CO and N2 through thermochemical reaction with H2O is concluded to be impossible, since the temperature is too low at a heliocentric distance 1.5 AU where CO+ ions begin to be observable.  相似文献   

14.
《Icarus》1986,67(3):484-514
Most of the solar energy absorbed by Venus is deposited in the atmosphere, at levels more than 60 km above the surface. This unusual flux distribution should have important consequences for the thermal structure and dynamical state of that atmosphere. Because there are few measurements of the solar flux at levels above 60 km, a radiative transfer model was used to derive the structure and amplitude of the solar fluxes and heating rates in the Venus mesosphere (60–100 km). This model accounts for all sources of extinction known to be important there, including absorption and scattering by CO2, H2O, SO2, H2SO4 aerosols and an unidentified UV absorber. The distributions of these substances in our model atmosphere were constrained by a broad range of spacecraft and ground-based observations. Above the cloud tops, (71 km), near-infrared CO2 bands absorb enough sunlight to produce globally averaged heating rates ranging from 4° K/day (24-hr period) at 71 km to more than 50° K/day at 100 km. The sulfuric acid aerosols that compose the Venus clouds are primarily scattering agents at solar wavelengths. These aerosols reflect about 75% of the incident solar flux before it can be absorbed by the atmosphere or surface. The unknown substance that causes the observed cloud-top ultraviolet contrasts is responsible for most of the absorption of sunlight within the upper cloud deck (57.5−71 km). This substance absorbs almost half of the sunlight deposited on Venus and contributes to solar heating rates as large as 6° K/day at levels near 65 km. With the exception of CO2, all of the important sources of solar extinction have concentrations that vary with position, and, in general, these concentrations are not well known. To determine the sensitivity of the model results to these uncertainties, the concentrations of these opacity sources were varied in the model atmosphere and solar fluxes were computed for each case. These tests indicate that CO2 dominates the solar absorption at levels above the cloud tops and that heating rates are relatively insensitive to the distribution of other sources of extinction there. Within the upper cloud deck, uncertainties in the distribution of the UV absorber and the H2SO4 aerosols can produce heating rate errors as large as 50% at some levels. Diurnally averaged solar heating rates for the nominal opacity distribution were computed as a function of latitude at altitudes between 55 and 100 km, where most of the solar flux is deposited. The zonal wavenumber 1 (diurnal) and zonal wavenumber 2 (semidiurnal) components of the diurnally varying solar heating rates were also computed in this domain. These results should be sufficiently reliable for use in numerical dynamical models of the Venus atmosphere.  相似文献   

15.
We report the detection of HCN on Jupiter. Three R-branch lines of the ν2 fundamental of HCN near 13.5 μm were observed in absorption, from which the HCN column density is inferred to be 5 × 10?3 cm-am with an uncertainty of a factor of 2. If emission from the stratosphere exists, then the derived column density is only a lowe limit. We suggest that the Jovian HCN most likely originates from the photolysis of CH4 and NH3 in the lower stratosphere and upper troposphere. In addition, an upper limit of 2.5 × 10?2 cm-am was established for the column density of HCN on Saturn.  相似文献   

16.
We present a preliminary analysis of CH4 absorptions near 6800 Å in new high resolution spectra of Uranus. A curve of growth analysis of the data yields a rotational temperature near 100 K and a CH4/H2 ratio that is 1 to 3 times that expected for a solar type composition. The long pathlengths of CH4, apparently demanded by absorptions near 4700 Å, are qualitatively shown to be the result of line formation in a deep, predominantly Rayleigh scattering atmosphere in which continuum absorption is a strong function of wavelength. The analysis of the CH4 also yields a minimum value for the effective pressure of line formation (~ 2 atm). This value is shown to be twice that expected on Uranus if the atmosphere were predominantly H2. It is speculated that large amounts of some otherwise optically inert gas is present in the Uranus atmosphere. N2 is suggested as a possible candidate since there are cosmogonic reasons why Uranus should contain large amounts of N relative to C, He, and H, and also because the pressure-induced pure rotation spectrum of N2 could possibly account for the low brightness temperatures that have recently been observed at 33 and 350 μm. If N2 is present the planet probably possesses a surface at the 10–100 atmosphere level.  相似文献   

17.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

18.
A model of the atmospheric structure of Uranus is presented which differs from previous types of models in two important respects: (1) The CH4/H2 ratio is sufficiently large that CH4 is saturated to large depths in the Uranian atmosphere. (2) The internal energy flux is small compared with that due to solar heating. Because of the small internal flux, the thermal flux decreases rapidly with depth and the atmosphere is radiative to large optical depths. A CH4 droplet cloud forms where the atmosphere finally becomes convective due to the internal flux. The model is shown to be in reasonable agreement with published observations of the H2 quadrupole 3-0 and 4-0 bands, the visible (4000–6000 Å) CH4 bands, and the infrared emission spectrum.  相似文献   

19.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   

20.
《Icarus》1987,70(1):1-12
An array spectrometer was used on the nights of 1985 May 30–June 1 to observe the disks of Uranus and Neptune in the spectral regions 7–14 and 17–23 μm with effective resolution elements ranging from 0.23 to 0.87 μm. In the long-wavelength region, the spectra are relatively smooth with the broad S(1) H2 collision-induced rotation line showing strong emission for Neptune. In the short-wavelength spectrum of Uranus, an emission feature attributable to C2H2 with a maximum stratospheric mixing ratio of 9 × 10−9 is apparent. An upper limit of 2 × 10−8 is placed on the maximum stratospheric mixing ratio of C2H6. The spectrum of Uranus is otherwise smooth and quantitatively consistent with the opacity provided by H2 collision-induced absorption and spectrally continuous stratospheric emission, as would be produced by aerosols. Upper limits to detecting the planet near 8 μm indicate a CH4 stratospheric mixing ratio of 1 × 10−5 or less, below a value consistent with saturation equilibrium at the temperature minimum. In the short-wavelength spectrum of Neptune, strong emission features of CH4 and C2H6 are evident and are consistent with local saturation equilibrium with maximum stratospheric mixing ratios of 0.02 and 6 × 10−6, respectively. Emission at 8–10 μm is most consistent with a [CH3D]/[CH4] volume abundance ratio of 5 × 10−5. The spectrum of Neptune near 13.5 μm is consistent with emission by stratospheric C2H2 in local saturation equilibrium and a maximum mixing ratio of 9 × 10−7. Radiance detected near 10.5 μm could be attributed to stratospheric C2H4 emission for a maximum mixing ratio of approximately 3 × 10−9. Quantitative results are considered preliminary, as some absolute radiance differences are noted with respect to earlier observations with discrete filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号