首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G.H. Rieke 《Icarus》1975,25(2):333-334
Infrared photometry of Amalthea (JV) indicates that it is at a temperature of 155±15 K and has a raduis of 120±30 km. There is no evidence for substantial heating by the Jovian radiation belts.  相似文献   

2.
The Voyager 1 observations of whistlers at Jupiter are summarized in order to provide a basis for further analyses of the density profile of the Io plasma torus as well as to support studies of atmospheric lightning at Jupiter. All the whistlers detected by Voyager I fell into three general regions in the torus at radial distances ranging between 5 and 6RJ. An analysis of the broadband wave amplitudes measured by the Voyager 1 plasma wave instrument and estimates of the peak whistler amplitudes imply that the grouping of whistlers was due to variations in the sensitivity of the receiver to the whistlers and not to variations in the source or propagation paths of the whistlers. The whistler dispersions are presented in statistical form for each of the three groups of events and analyzed in view of the structure of the Io plasma torus as determined by plasma measurements. The results of these analyses give source locations for the whistlers at the foot of the magnetic field lines threading the torus in both hemispheres and over a range of longitudes.  相似文献   

3.
Two bright spots shown by Voyager 2 images on Saturn's north temperate belt are discussed in terms of a simple photometric model in which the brightness differences are caused by obscuring matter above the main cloud layer. In the ultraviolet light, in which scattering by small particles is very effective, the spots are invisible. In the violet light they seem to be holes in the dark matter and therefore the brighter layer below it becomes visible. Also they could be rises in the bright matter. In the green light the spots are more complicated since this wavelength interval contains very strong emission spectra lines of ammonia.  相似文献   

4.
The Cassini plasma spectrometer (CAPS) instrument made measurements of Titan's plasma environment when the Cassini Orbiter flew through the moon's plasma wake October 26, 2004 (flyby TA). Initial CAPS ion and electron measurements from this encounter will be compared with measurements made by the Voyager 1 plasma science instrument (PLS). The comparisons will be used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PLS measurements. The plasma wake trajectories of flyby TA and Voyager 1 are similar because they occurred when Titan was near Saturn's local noon. These similarities make possible direct, meaningful comparisons between the various plasma wake measurements. They lead to the following: (A) The light and heavy ions, H+and N+/O+, were observed by PLS in Saturn's magnetosphere in the vicinity of Titan while the higher mass resolution of CAPS yielded H+ and H2+as the light constituents and O+/CH4+ as the heavy ions. (B) Finite gyroradius effects were apparent in PLS and CAPS measurements of ambient O+ ions as a result of their absorption by Titan's extended atmosphere. (C) The principal pickup ions inferred from both PLS and CAPS measurements are H+, H2+, N+, CH4+ and N2+. (D) The inference that heavy pickup ions, observed by PLS, were in narrow beam distributions was empirically established by the CAPS measurements. (E) Slowing down of the ambient plasma due to pickup ion mass loading was observed by both instruments on the anti-Saturn side of Titan. (F) Strong mass loading just outside the ionotail by a heavy ion such as N2+ is apparent in PLS and CAPS measurements. (G) Except for the expected differences due to the differing trajectories, the magnitudes and structures of the electron densities and temperatures observed by both instruments are similar. The high-energy electron bite-out observed by PLS in the magnetotail is consistent with that observed by CAPS.  相似文献   

5.
Robert A. Freitas 《Icarus》1983,55(2):337-343
This paper discusses observational considerations in a search for extraterrestrial intelligence (SETI) program to detect extraterrestrial messenger probes in the solar system. Observable artifacts will most likely be found in a search space consisting of geocentric, selenocentric, Earth-Moon libration, and Earth-Moon halo orbits, which may be searched to a limiting artifact size of 1–10 m (pv = 0.1) using existing or foreseeable instrumentation.  相似文献   

6.
Recent developments in image processing, modelling and mapping techniques have been used to produce a revised shape model of Amalthea, a new map of the satellite and improved interpretations of the geology of the satellite. The global shape is influenced by the presence of several very large craters. Several major valleys, probably related to one or more of the largest craters, cross the surface. Bright spots may consist of fresh crater ejecta derived from shallow bedrock at ridges or crater rims rather than recent mass wasting deposits or exposed bedrock.  相似文献   

7.
Saturn atmospheric temperatures at the 150-mbar level retrieved from Voyager IRIS measurements indicate the presence of small-scale meridional gradients which are approximately symmetric with respect to the equator, but are superposed on a large-scale hemispheric thermal asymmetry. Under the assumption that the retrieved values at this atmospheric level represent kinetic temperatures on a constant pressure surface, it is suggested that the small-scale structure is produced by a meriodional circulation associated with the dissipative decay of the zonal winds with height, while the hemispheric asymmetry represents a thermal response to the seasonally varying insolation. The small-scale gradients are correlated with zonal winds derived from Voyager images at mid and high latitudes through the thermal wind relation; the calculated thermal wind shears suggest a decay with height of the jet system toward a state of uniform eatward flow. The existence of the approximately symmetric zonal winds and associated temperature gradients in the presence of a large-scale seasonal thermal response suggests that the jet system is driven at depths substantially below the levels where seasonally modulated insolation is important (p?0.5 bar).  相似文献   

8.
J. Gradie  P. Thomas  J. Veverka 《Icarus》1980,44(2):373-387
Voyager images have revealed that most of Amalthea's surface is very dark and very red, with a few isolated bright spots having a distinct greenish spectrum. These unique color characteristics probably result from the unusual environment of the satellite. It is proposed that charged particles from the Jovian magnetosphere, contaminants such as sulfur from Io, and high-velocity micrometeoritic matter combine to darken, redden, and alter Amalthea's surface. The effects of sulfur and sulfur allotrope contamination are shown to redden a variety of bulk compositions: (a) carbonaceous material, (b) refractory minerals, (c) iron and iron sulfides, and (d) moderate temperature silicates. Carbonaceous-sulfur systems provide good, but not unique, spectral matches to the dark areas. The bright, greenish spots probably identify locations in which atypical alteration processes occur. These may include variations in the amount of contaminant sulfur in micrometeoritic glasses or in the relative abundances of certain sulfur allotropes. A major conclusion of this work is that available spectral-reflectance data contain little information about the bulk composition of the satellite. Spectrophotometry over an extended spectral range may be useful in specifying the composition of the surface more uniquely, but a determination of the satellite's mean density may be the only way of discriminating among possible bulk compositions.  相似文献   

9.
Utilizing the topographic model of Jovian moon Amalthea (Stooke, 1994) and supposing that its mass density is constant we derived its basic geometrical and dynamical characteristics. For calculations the harmonic model of topography of the degree and order 18 was selected. The model appears to fit the entire surface to a mean accuracy of a few hundred meters, except in the regions localized around longitudes 0° and 180°. On the basis of the harmonic expansion of the topography we estimated the volume (V = 2.43 ± 0.02 km3) and the mean radius of topographyr 0 = (79.7 ± 0.2) km. Generalized moments of inertia up to the order 2, principal moments of inertia and orientation of the principal axes with respect to the original reference frame were also calculated. The results show that although Amalthea has extremely irregular shape it may be treated dynamically as an almost symmetric body (B C). Finally, the set of the Stokes coefficients up to the degree and order 9 was evaluated. The results are verified by direct numerical integration.  相似文献   

10.
P. Thomas  J. Veverka 《Icarus》1985,64(3):414-424
A total of 82 images of Hyperion was returned by the Voyager spacecraft; the most detailed views have a nominal resolution of 8.7 km/line pair. Hyperion had a rotation period of about 13 days and a spin vector lying close to its orbital plane at the time of the Voyager 2 encounter in 1981. The satellite's shape is very irregular, and cannot be approximated suitably by an ellipsoid. The largest cross section (A × C) is about 370 × 225 km; the B × C cross section is approximately 280 × 225 km. Most prominent among the surface features is a 120-km-diameter crater with an estimated depth of 10 km, and a series of arcuate scarps 300 km long that have relief in excess of 5 km. The density of large craters of Hyperion is smaller than that on other small Saturnian satellites and suggests the possibility that the last significant fragmentation of Hyperion occurred near the end of or after initial heavy bombardment. Voyager photometry yields an average normal reflectance of the surface material of 0.21 in the clear filter (0.47 μm) and evidence of slight albedo mottling over the surface. The disk-integrated phase coefficient between phase angles of 22° and 82° is 0.018 mag/de; there is little indication of a strong opposition effect in Voyager data down to phase angles of 3°. Hyperion's average color is definitely redder than that of Phobe, but matches that of the dark material on the leading hemisphere of Iapetus quite well. The satellite's albedo and color are consistent with those of contaminated water ice but since no mass determinations of Hyperion exist we do not know whether the bulk composition is icy or rocky.  相似文献   

11.
A topographic model of Amalthea (JV) was derived from the shapes of limbs and terminators in Voyager images, modified locally to accommodate large craters and ridges. The model is presented in tabular and graphic form, including the first detailed shaded relief maps of the satellite. The shape is very irregular, with radii varying between about 53 and 151 ± 5 km. The minimum value occurs in a deep crater at the south pole. The volume is estimated to be 2.5 ± 0.5 × 106km3. A prominent groove or valley extends some 150 km across the trailing side. High albedo, spectrally distinct markings are mapped and found to have a less obvious relationship with relief than previously suggested.  相似文献   

12.
Images from three filters of the Voyager 1 wide-angle camera were used to measure the continuum reflectivity and spectral gradient near 6000 Å and the 6190-Å band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark “barge” features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition, probably not elemental sulfur. Methane absorption was shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Some small-scale features, unresolvable at ground-based resolution, show significant enhancement in methane absorption. Any enhancement in methane absorption is conspicuously absent in both hot spot regions with 5-μm brightness temperature 255°K. Methane absorption and 5-μm emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneously maps of 5-μm brightness temperature were quantitatively compared to realistic cloud structure models which include multiple scattering at 5 μm as well as in the visible. A curve in parameter space defines the solution to any observed quantity, ranging from a shallow atmosphere and thin NH3 cloud to a deep atmosphere with a thick ammonia cloud. Without additional constraints, such as center-to-limb information, it is impossible to specify the NH3 cloud optical depth and pressure of a deeper cloud top independently. Variability in H2 quadrupole lines was also investigated and it was found that the constancy of the 4-0 S(1)-line equivalent width is consistent with the constancy of the methane 6190-Å band equivalent width at ground-based resolution, but the much greater variability of the 3-0 S(1) line is inconsistent with either the methane band or 4-0 S(1) line. In hot spot regions the 255°K brightness temperature requires a cloud optical depth of about 2 or less at 5 μm in the NH3 cloud layer. To be consistent with the observed 6190-Å methane absorption in hot spot regions, the NH3 cloud optical depth in the visible is about 7.5, implying that aerosols in hot spot regions have effective radii near 1 μm or less.  相似文献   

13.
Voyager images of Iapetus ranging in phase angle from 8 to 90° were used to define the satellite's photometric properties and construct an albedo map of its surface. The images confirm that the albedo distribution has a roughly hemispheric asymmetry, as had been inferred from earlier analyses of the disk-integrated lightcurve. On the darker leading hemisphere albedo contours are roughly elliptical in shape and centered at the apex of orbital motion, flattened at the poles and elongated along the equator. The reflectance within the darker material is lowest (0.02–0.03) at the apex, and increases with increasing distance from the apex. The albedo pattern on the brighter trailing hemisphere is more complex. Reflectance increases gradually with increasing distance from the interface with the darker material, and reaches a maximum near the poles. Reflectances of 0.3–0.4 in the brighter material are common, and the highest values probably reach 0.6. The transition in reflectance contours between the two materials is gradual rather than sharp, and albedo histograms of images centered on the visually perceived boundary are weakly bimodal. The dark material on Iapetus is reddish, the bright material somewhat less so.  相似文献   

14.
P. Michel  D.P. O'Brien  S. Abe  N. Hirata 《Icarus》2009,200(2):503-513
In this paper, we study cratering and crater erasure processes and provide an age estimate for the near-Earth Asteroid (25143) Itokawa, the target of the mission Hayabusa, based on its crater history since the time when it was formed in the main belt by catastrophic disruption or experienced a global resetting event. Using a model which was applied to the study of the crater history of Gaspra, Ida, Mathilde and Eros [O'Brien, D.P., Greenberg, R., Richardson, J.E., 2006. Icarus 183, 79–92], we calculate the time needed to accumulate the craters on Itokawa's surface, taking into account several processes which can affect crater formation and crater erasure on such a low-gravity object, such as seismic shaking. We use two models of the projectile population and two scaling laws to relate crater diameter to projectile size. Both models of the projectile population provide similar results, and depending on the scaling law used, we find that the time necessary to accumulate Itokawa's craters was at least ∼75 Myr, and maybe as long as 1 Gyr. Moreover, using the same model and similar parameters (scaled accordingly), we provide a good match not only to Itokawa's craters, but also to those of Eros, which has also been imaged at high enough resolution to give crater counts in a similar size range to those on Itokawa. We show that, as for Eros, the lack of small craters on Itokawa is consistent with erasure by seismic shaking, although for Itokawa, the pronounced deficiency of the smallest craters (<10 m in diameter) requires another process or event in addition to just seismic shaking. A small body such as Itokawa is highly sensitive to specific events that may occur during its history. For example, the two parts of Itokawa, called head and body, may well have joined each other by a low-velocity impact within the last hundred thousand years [Scheeres, D.J., Abe, M., Yoshikawa, M., Nakamura, R., Gaskell, R.W., Abell, P.A., 2007. Icarus 188, 425–429]. In addition to providing an erasure mechanism for small craters, the proposed timescale of that event is consistent with the timescale necessary in our model to form the current, depleted population of just a few small (<10 m) craters on Itokawa, suggesting that it may be the explanation for the discrepancy between Itokawa's cratering record and that obtained from our equilibrium seismic shaking model. Other explanations for the depletion of the smallest craters on Itokawa, such as armoring by boulders lying on the surface, cannot be ruled out.  相似文献   

15.
16.
R.S. Harrington 《Icarus》1985,61(1):60-62
With allowance for galactic perturbations and observational error, the observed distributions of sizes an orientations of very long period comets are consistent with a uniform distribution of comets within the Oort Cloud.  相似文献   

17.
Ninety voyager images ranging in phase angle from 3 to 143° and covering the spectral range from 0.34 to 0.58 μm were analyzed to derive the photometric properties of Europa. At small phase angles the disk-integrated phase curve is remarkable in that it shows little or no evidence of an opposition effect (in agreement with earlier Earth-based observations by Millis and Thompson, Icarus26, 408, 1975). The phase integral determined in the Voyager clear filter (centered near 0.47 μm) is 1.09 ± 0.11, in good agreement with previous estimates based on radiometry. The bolometric Bond albedo is 0.62 ± 0.14. The scattering properties of Europa in general, and of the two major terrain types (bright plains and darker mottled terrain) in particular, cannot be represented by a lunar-like photometric law. However, an equation which is a linear superposition of a lunar-like scattering law and a Lambert component provides an adequate simple representation of the scattering properties. The plains are photometrically more homogeneous than the darker mottled terrain. In the Voyager clear filter, the average normal reflectance is 0.71 for the plains on both the leading and trailing hemispheres; for the darker mottled terrain the values are 0.60 on the leading hemisphere, and 0.48 on the trailing one.  相似文献   

18.
Bonnie J. Buratti 《Icarus》1984,59(3):392-405
Photometric analysis of Voyager images of the medium-sized icy satellites of Saturn shows that their surfaces exhibit a wide range of scattering properties. At low phase angles, Rhea and Dione closely follow lunar behavior with almost no limb darkening. Mimas, Tethys, and especially Enceladus shiw significant limb darkening at low phase angles, which suggests multiple scattering is important for their surfaces. A simple photometric function of the form I/F = f(α)0/(μ + μ0) + (1 ? A)μ0 has been fit to the observations. For normal reflectances <0.6, we find lunar-like scattering properties (A = 1). No satellite's surface can be described by Lambert's Law (A = 0). Dione exhibits the widest albedo variations (about 50%). A longitudinal dark stripe which represents a 15% decrease in albedo is situated near the center of the trailing side of Tethys. A correlation is found between the albedo and color of the satellites: the darker objects are redder. Similarly, darker areas of each satellite are redder. Spectral reflectances of Mimas and Enceladus can be derived for the first time. After the proper calibrations to the Voyager color images are made, it is found that both satellites have remarkably flat spectra into the ultraviolet.  相似文献   

19.
Voyager full-disk images of Io, available at solar phase angle of α = 2?29° and 101?159°, allow comparisons of the satellite's near-opposition photometric behavior with Earth-based results and the determination of the phase curve out to very high phase angles. The near-opposition data were reduced iteratively for self-consistent phase and rotation curves in each Voyager filter; the resulting phase coefficients, geometric albedos, and rotational lightcurves are consistent with Earth-based findings, except for a previously noted tendency for Voyager to yield somewhat redder spectral information. The derived near-opposition phase coefficients, ranging between 0.016 and 0.024 mag/ deg, decrease with increasing wavelength, a trend weakly noted in some Earth-based observations. The full, α = 2?159° phase curves allow the first direct determination of the phase integral of Io at several wavelengths: q rises from ≈0.7 in the ultraviolet to ≈0.8 in the orange. Combination of the Voyager phase integrals with Earth-based albedo information leads to a best estimate of the bolometric Bond albedo of 0.50 ± 0.10, a value consistent with, but slightly below, previous estimates.  相似文献   

20.
Measurements at 3.5 mm of the disk-average brightness temperature of Mars during the 1978 opposition can be represented by
TB(Mars, 3 5 mm, Jan/Feb 1978) =
(The errors cited are from the internal scatter; the estimated absolute calibration uncertainty is 3%.) This longitudinal variation must be taken into account if Mars is to be used as a calibration source at millimeter wavelengths. The total range of the 3.5-mm variation is three to four times larger than both the 2.8-cm and 20-μm variations. This unexpected result can possibly be explained by subsurface scattering from rocks ?1.5-cm radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号