首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents optimization and uncertainty analysis of operation policies for Hirakud reservoir system in Orissa state, India. The Hirakud reservoir project serves multiple purposes such as flood control, irrigation and power generation in that order of priority. A 10-daily reservoir operation model is formulated to maximize annual hydropower production subjected to satisfying flood control restrictions, irrigation requirements, and various other physical and technical constraints. The reservoir operational model is solved by using elitist-mutated particle swarm optimization (EMPSO) method, and the uncertainty in release decisions and end-storages are analyzed. On comparing the annual hydropower production obtained by EMPSO method with historical annual hydropower, it is found that there is a greater chance of improving the system performance by optimally operating the reservoir system. The analysis also reveals that the inflow into reservoir is highly uncertain variable, which significantly influences the operational decisions for reservoir system. Hence, in order to account uncertainty in inflow, the reservoir operation model is solved for different exceedance probabilities of inflows. The uncertainty in inflows is represented through probability distributions such as normal, lognormal, exponential and generalized extreme value distributions; and the best fit model is selected to obtain inflows for different exceedance probabilities. Then the reservoir operation model is solved using EMPSO method to arrive at suitable operational policies corresponding to various inflow scenarios. The results show that the amount of annual hydropower generated decreases as the value of inflow exceedance probability increases. The obtained operational polices provides confidence in release decisions, therefore these could be useful for reservoir operation.  相似文献   

2.
The properties of the sunspot latitudinal distributions related to skewness have been studied based on the data of the extended Greenwich catalog for 1874–2011. The results of the performed analysis indicate that a significant skewness is present in most annual latitudinal distributions of the sunspot index. In this case, the distribution skewness increases near the 11-year cycle maximum phase. An increase in the sunspot group number is also accompanied by an increase in skewness. In particular, when the sunspot index is large, the number of groups located below midlatitudes is mostly larger than the number of groups above these latitudes and this imbalance increases with increasing total sunspot activity level. In medium and large 11-year cycles, the average distribution skewness for a cycle is always positive and its value is related to the cycle amplitude. This results agree with the theoretical models of the 11-year cycle, where the specific features of the low-latitude meridional circulation are related to the sunspot activity level.  相似文献   

3.
Renard P 《Ground water》2005,43(3):439-442
The calculation of the discharge to a constant drawdown well or tunnel in the presence of an infinite linear constant head boundary in an ideal confined aquifer usually relies on the numerical inversion of a Laplace transform solution. Such a solution is used to interpret constant head tests in wells or to roughly estimate ground water inflow into tunnels. In this paper, a simple approximate solution is proposed. Its maximum relative error is on the order of 2% as compared to the exact analytical solution. The approximation is a weighted mean between the early-time and late-time asymptotes.  相似文献   

4.
The balance of a component contained in river water is considered taking into account its input with lateral inflow and decay in the aquatic environment. Random changes in lateral inflow causes fluctuations in the parameters of component input and decay. A stochastic equation of component balance is derived and used as the basis for the construction of an equation for the probability density of component concentration. The solution of this equation shows that the probability density follows lognormal law. This theoretical result is applicable to the analysis of time series of water salt composition components, including pH, alkalinity, chlorides, ammonia, iron, and aluminum. The applicability of the lognormal law is proved and distribution parameters are evaluated. The distributions of three components (pH, alkalinity, and chlorides) are found to split into two lognormal branches, describing high and low component concentrations. In the case of pH and alkalinity, this splitting is due to seasonal effects, while in the case of chlorides, it is caused by the difference between concentrations in the surface runoff at the early and final stages of snow melting and rainfalls. The application of the statistical distributions for probabilistic forecasting of extreme component concentrations is considered. The exceedance probability of standard limits of the components is considered. The use of exceedance probability in hydrochemical standardization is demonstrated.  相似文献   

5.
The numerical modelling of seismic diffraction, e.g., at faults and other discontinuities, generally requires the use of fast approximate methods. The geophysicist responsible for the development of such numerical methods has a real need of exact solutions to certain ideal geometries to check the accuracy of his calculations. One such exact solution, which is available, is the acoustic wave solution to the perfectly reflecting wedge. The solution is three-dimensional and the source is an explosive point source. This model is ideal for seismic diffraction; the solution has the advantage of being exact, truly three-dimensional and of being in the convenient form of the temporal and spatial impulse response. More complicated sources which are extended in either space or time can, therefore, be modelled exactly by numerical integration. This paper presents some examples of the use of the perfectly reflecting wedge as a control model for an asymptotic high frequency diffraction modelling method. This control model has revealed that certain survey and wedge configurations can yield significant disagreement with, e.g., the Kirchhoff approximation. Such configurations could occur during VSP modelling when the survey lies in the near field or in the shadow zone of a high contrast fault. This control model has also been instructive in demonstrating why the high frequency, asymptotic, approximation is generally very good and has indicated a possible improvement to the Kirchhoff approximation for edge diffraction.  相似文献   

6.
Optimization of multi-reservoir systems operations is typically a very large scale optimization problem. The following are the three types of optimization problems solved using linear programming (LP): (i) deterministic optimization for multiple periods involving fine stage intervals, for example, from an hour to a week (ii) implicit stochastic optimization using multiple years of inflow data, and (iii) explicit stochastic optimization using probability distributions of inflow data. Until recently, the revised simplex method has been the most efficient solution method available for solving large scale LP problems. In this paper, we show that an implementation of the Karmarkar's interior-point LP algorithm with a newly developed stopping criterion solves optimization problems of large multi-reservoir operations more efficiently than the simplex method. For example, using a Micro VAX II minicomputer, a 40 year, monthly stage, two-reservoir system optimization problem is solved 7.8 times faster than the advanced simplex code in MINOS 5.0. The advantage of this method is expected to be greater as the size of the problem grows from two reservoirs to multiples of reservoirs. This paper presents the details of the implementation and testing and in addition, some other features of the Karmarkar's algorithm which makes it a valuable optimization tool are illuminated.  相似文献   

7.
Optimization of multi-reservoir systems operations is typically a very large scale optimization problem. The following are the three types of optimization problems solved using linear programming (LP): (i) deterministic optimization for multiple periods involving fine stage intervals, for example, from an hour to a week (ii) implicit stochastic optimization using multiple years of inflow data, and (iii) explicit stochastic optimization using probability distributions of inflow data. Until recently, the revised simplex method has been the most efficient solution method available for solving large scale LP problems. In this paper, we show that an implementation of the Karmarkar's interior-point LP algorithm with a newly developed stopping criterion solves optimization problems of large multi-reservoir operations more efficiently than the simplex method. For example, using a Micro VAX II minicomputer, a 40 year, monthly stage, two-reservoir system optimization problem is solved 7.8 times faster than the advanced simplex code in MINOS 5.0. The advantage of this method is expected to be greater as the size of the problem grows from two reservoirs to multiples of reservoirs. This paper presents the details of the implementation and testing and in addition, some other features of the Karmarkar's algorithm which makes it a valuable optimization tool are illuminated.  相似文献   

8.
An approximate solution to the problem of the drift of a raft formed of two parallel wires, differentially heated, rigidly coupled and floating in a fluid of finite thickness and with linear viscosity, has been obtained and is shown to agree well with experiment up to a multiplicative constant. In addition, the solution to the problem of the drift of a solid raft with a suspended single-wire heater also shows good agreement with experiment up to a multiplicative constant. In both cases, the rafts drift with constant velocity. For small amounts of heat, the drift velocity is proportional to the first power of the heat input; for large amounts of heat, the drift velocity is proportional to the square root of the heat input. Within imponderable factors of an order of magnitude, the drift velocities are appropriate for drift of lithospheric plates containing both an oceanic and a continental part.  相似文献   

9.
We present a fast approximate method for three‐dimensional low frequency controlled source electro‐magnetic modeling. We apply the method to a synthetic model in a typical marine controlled source electromagnetic scenario, where conductivity and permittivity are different from the known background medium. For 3D configurations, fast computational methods are relevant for both forward and inverse modelling studies. Since this problem involves a large number of unknowns, it has to be solved efficiently to obtain results in a timely manner, without compromising accuracy. For this reason, the Born approximation, extended Born approximation and iterative extended Born approximation are implemented and compared with the full solution of the conjugate gradient fast Fourier transformation method. These methods are based on an electric field domain integral equation formulation. It is shown here how well the iterative extended Born approximation method performs in terms of both accuracy and speed with different configurations and different source positions. The improved accuracy comes at virtually no additional computational cost. With the help of this method, it is now possible to perform sensitivity analysis using 3D modelling in a timely manner, which is vital for controlled source electromagnetic applications. For forward modeling the solution at the sea‐bottom is of interest, because that is where the receivers are usually located. For inverse modeling, the accuracy of the solution in the target zone is important to obtain reasonably accurate conductivity values from the inversion using this approximate solution method. Our modelling studies show that the iterative extended Born approximation method is fast and accurate for both forward and inverse modelling. Sensitivity analysis as a function of the source position and different reservoir sizes validate the accuracy of the iterative extended Born approximation.  相似文献   

10.
The selection and the subsequent design of a subsurface CO2 storage system are subject to considerable uncertainty. It is therefore important to assess the potential risks for health, safety and environment. This study contributes to the development of methods for quantitative risk assessment of CO2 leakage from subsurface reservoirs. The amounts of leaking CO2 are estimated by evaluating the extent of CO2 plumes after numerically simulating a large number of reservoir realizations with a radially symmetric, homogeneous model. To conduct the computationally very expensive simulations, the ‘CO2 Community Grid’ was used, which allows the execution of many parallel simulations simultaneously. The individual realizations are set up by randomly choosing reservoir properties from statistical distributions. The statistical characteristics of these distributions have been calculated from a large reservoir database, holding data from over 1200 reservoirs. An analytical risk equation is given, allowing the calculation of average risk due to multiple leaky wells with varying distance in the surrounding of the injection well. The reservoir parameters most affecting risk are identified. Using these results, the placement of an injection well can be optimized with respect to risk and uncertainty of leakage. The risk and uncertainty assessment can be used to determine whether a site, compared to others, should be considered for further investigations or rejected for CO2 storage.  相似文献   

11.
Although based on exact analytical solutions, semi‐analytical solute transport models can have significant numerical error in applications with high frequency oscillatory source terms and when parameter value combinations cause series solution approximations to converge slowly. Methods for correcting these numerical errors are presented and implemented in the AT123D code, which employs Green's functions to represent point, linear, and rectangular prismatic source zones. In order to increase its computational accuracy, a Romberg numerical integration scheme was added to AT123D with prespecified error criteria, variable time stepping, and partitioning of the integral to handle rapidly changing source terms. More rapidly converging series solution approximations for the Green's functions were also incorporated to improve both accuracy and computational efficiency for finite‐depth aquifers. AT123D also has been modified to eliminate redundant calculations at points where approximate steady‐state conditions have been reached to improve computational efficiency during numerical integration. These modifications help to decrease computer run times that can be excessive for three‐dimensional problems with large numbers of computational points, small time steps, and/or long simulation time periods. Errors in the original AT123D code also were corrected in this modified version, AT123D‐AT, in order to accurately simulate finite‐duration (pulse) source releases.  相似文献   

12.
13.
14.
Modelling the theoretical response of several important geophysical systems involves the solution of Poisson's equation with homogeneous Neumann boundary conditions (i.e. a zero normal gradient) imposed over either open or closed surfaces. A simple integral equation solution to this problem is derived from first principles. It is applicable to both types of surface and in this respect represents an improvement on existing integral equation techniques. However, the present surface integral equation displays a strong singularity of order 1/R3 which requires an appropriate interpretation for its implementation. A comparison of some numerical results with analytical data taken from the literature demonstrates that the proposed integral equation technique is suitably robust, accurate and efficient for practical application in geophysical interpretation.  相似文献   

15.
Forward seismic modelling in the acoustic approximation, for variable velocity but constant density, is dealt with. The wave equation and the boundary conditions are represented by a volume integral equation of the Lippmann-Schwinger (LS) or Fredholm type. A T-matrix (or transition operator) approach from quantum mechanical potential scattering theory is used to derive a family of linear and nonlinear approximations (cluster expansions), as well as an exact numerical solution of the LS equation. For models of 4D anomalies involving small or moderate contrasts, the Born approximation gives identical numerical results as the first-order t-matrix approximation, but the predictions of an exact T-matrix solution can be quite different (depending on spatial extention of the perturbations). For models of fluid-saturated cavities involving large or huge contrasts, the first-order t-matrix approximation is much more accurate than the Born approximation, although it does not lead to significantly more time-consuming computations. If the spatial extention of the perturbations is not too large, it is practical to use the exact T-matrix solution which allows for arbitrary contrasts and includes all the effects of multiple scattering.  相似文献   

16.
An accurate algorithm for the integration of the equations of motion arising in structural dynamics is presented. The algorithm is an unconditionally stable single-step implicit algorithm incorporating algorithmic damping. The displacement for a Single-Degree-of-Freedom system is approximated within a time step by a function which is cubic in time. The four coefficients of the cubic are chosen to satisfy the two initial conditions and two weighted integral equations. By considering general weight functions, eight additional coefficients arise. These coefficients are selected to (i) minimize the difference between exact and approximate solutions for small time steps, (ii) incorporate specified algorithmic damping for large time steps, (iii) ensure unconditional stability and (iv) minimize numerical operations in forming the amplification matrix. The accuracy of the procedure is discussed, and the solution time is compared with a widely used algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
瞬变电磁场时域格林函数解   总被引:3,自引:3,他引:0       下载免费PDF全文
近源时间域电磁场具有信号强、探测深度大、精度高等优点,但传统勘探电磁场理论中偶极子近似在近源会引起较大误差,导致这一优势的发挥受到了制约.开展直接时间域电磁场解析式研究,是解决这一问题的途径之一.本文提出在点电荷微元假设下,引入时域格林函数,求取瞬变电磁场时间域解析解.采用积分运算法,把电磁场阻尼波动方程的求解问题转化为求其格林函数积分形式解的问题;建立辅助路径解决奇点问题,利用复分析中的约当引理、留数定理和广义函数等理论和方法,推导计算出时间域格林函数的时空四重广义积分.得到达朗贝尔方程的直接时域格林函数精确解析式,与传统方法“比拟”出的公式具有相同的形式,验证了本文推导的时域格林函数解析公式的正确性;推导出扩散方程的直接时间域解析解.通过与时变点电荷源时间域的电磁响应近似表达式进行对比,得出本文所推导的公式计算精度较高的结论;建立了全空间回线源瞬变电磁场问题的直接时间域求解公式.为解决全场区瞬变电磁场精细探测直接时域解析问题提供了基础理论.  相似文献   

18.
In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month’s inflow (Qt−1), current month’s inflow (Qt), past month’s release (Rt−1), and past month’s Palmer drought severity index (PDSIt−1) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.  相似文献   

19.
A dome-shaped layer can be selected as a storage site for fluid injection. In this study, we develop a mathematical model for simulating transient head distribution in a heterogeneous and anisotropic dome-shaped layer due to a constant-head injection in a fully penetrating well. In the model, a form of step change is adopted to approximate the upper and lower boundaries of the dome and then the layer is split into two regions. The Laplace-domain solution of the model is developed using the Laplace transform and method of separation of variables. The transient injection rate at wellbore can then be obtained based on Darcy’s law and Bromwich integral method. The predicted head contours from the head solution show significant vertical flow components near the location of step change in the dome reservoir. The results of sensitivity analysis indicate that the hydraulic conductivity is the most sensitive parameter and the specific storage is the least sensitive one to the injection rate after a short period of injection time. In addition, the injection rate for a dome reservoir is also very sensitive to the change of the height for the reservoir near the injection well (first region) at a very early injection time. In contrast, the injection rate is more sensitive to the change of the height of the second region than that of the first region at late time. This analytical solution may be used as a primary tool to assess the capacity of fluid injection to various dome reservoirs.  相似文献   

20.
This paper examines the potential of the adaptive hp-FEM method for the numerical solution of time-dependent variably saturated Darcian flow problems described by the Richards equation. The method is illustrated on three model problems: a benchmark with known exact solution, groundwater seepage into a dry lysimeter box with time-dependent boundary conditions, and capillary barrier behavior under an intense infiltration. In the second part of the paper we present the weak formulation of the Richards equation for the Newton’s and Picard’s methods, give a brief overview of adaptive hp-FEM with emphasis on aspects that are usually not discussed in the literature, and we briefly introduce the open source adaptive hp-FEM library HERMES that was used to generate numerical results for this paper. All computations that we present are easily reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号