首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large amounts of gas can result from anaerobic corrosion of metals and from chemical and biological degradation of organic substances in underground repositories for radioactive waste. Gas generation may lead to the formation of a buoyant gas phase bubble (i.e. zone with increased gas saturation surrounded by water) and to the migration of radioactive gaseous species. In this situation, gaseous species migration is controlled by (1) advection, dispersion and diffusion within the gas bubble, and (2) dissolution in the water surrounding the gas bubble and diffusion of the dissolved species away from the interface. A number of gas tracer tests were performed in the framework of the GAs Migration (GAM) project to study the role played by dissolution/diffusion phenomena in gas transport. Tracers were selected to display a large range of solubility and diffusion coefficients, which should have led to significant chromatographic separation in the breakthrough curves (BTCs) of the tracers. However, measured BTCs displayed much smaller chromatographic separation than expected. These curves were interpreted using (1) a numerical model of multiphase flow and tracer transport in the fracture plane and diffusion into the immobile water, and (2) a simple two box model. Results showed that dissolution/diffusion into immobile water regions played a small role, and tailing appears to have been largely controlled by diffusion into dead gas volumes, such as boreholes.  相似文献   

2.
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three‐dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high‐resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time‐lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.  相似文献   

3.
The migration mechanisms of endogenous gases in the geosphere are defined in relation to the fluid-rock conditions and analyzed by basic transport equations. Upon examining the geological factors that influence the physical parameters in the equations in porous and fracture media, and considering the widespread high-permeability of deep subsurface rocks, in terms of fracture aperture, (orders of 10−2 to 101 mm at depths of thousands meters, as suggested by recent crustal surveys) advection of carrier gases, in its several forms (gas-phase flow, water displacement by gas, gas slugs and bubbles) seems to represent a major migration process. Accordingly, in contrast with early views, the role of gas diffusion and water advection in the transport of endogenous gas to the Earth surface should be strongly minimized in many contexts. In a wide range of geological settings, carrier gases (CO2, CH4) may assume a dominant role in controlling transport and redistribution toward the Earth’s surface of trace gases (Rn, He). Bubble movement in fissured rocks seems to be an effective way of rapid (gas velocities in the order of 100 to 103 m per day) and long-distance gas migration. The evolution from bubble regimes to continuous phase flow and vice versa, as gas pressure and fracture width change, is the most suitable mechanism towards determining the surface geochemical processes of seismo-tectonic, environmental and geo-exploration relevance. The transport effectiveness of trace gases by a carrier gas has yet to be studied in quantitative terms. It is already clear, however, that further studies on the distribution and behavior of trace gases approaching the Earth’s surface may not be meaningful unless accompanied by carrier gas dynamics analyses.  相似文献   

4.
南海北部琼东南海域活动冷泉特征及形成模式   总被引:3,自引:0,他引:3       下载免费PDF全文
近年来,活动冷泉的研究越来越受到关注.本文利用多波束数据、多道地震数据以及底质取样结果研究琼东南海域活动冷泉系统,分析活动冷泉的羽状流特征、海底地貌与底质特征以及流体活动构造特征.多波束水体数据上,观测到多个延伸高度超过750 m的气泡羽状流,海底流体活动非常强烈;多道地震上识别出麻坑、流体运移通道、气烟囱等流体渗漏相关的构造,与其他海域观测到的反射特征不同,羽状流的下方流体运移通道呈强振幅"串珠"反射;重力活塞取样在两个站位上获得浅表层块状天然气水合物.其中一个站位位于活动冷泉附近,天然气水合物赋存于海底以下8 m左右.基于以上三方面的数据,笔者提出了一个用于描述活动冷泉系统的形成模式,游离气通过气烟囱向上运移到达浅层,一部分在天然气水合物稳定带内形成天然气水合物,另一部分穿透天然气水合物稳定带到达海底,形成活动冷泉的羽状流.  相似文献   

5.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
《Advances in water resources》2005,28(11):1254-1266
A detailed model was formulated to describe the non-isothermal transport of water in the unsaturated soil zone. The model consists of the coupled equations of mass conservation for the liquid phase, gas phase and water vapor and the energy conservation equation. The water transport mechanisms considered are convection in the liquid phase, and convection, diffusion and dispersion of vapor in the gas phase. The boundary conditions at the soil–atmosphere interface include dynamical mass flux and energy flux that accounts for radiation transport. Comparison of numerical simulations results with published experimental data demonstrated that the present model is able to describe water and energy transport dynamics, including situations of low and moderate soil moisture contents. Analysis of field studies on soil drying suggests that that dispersion flux of the water vapor near the soil surface, which is seldom considered in soil drying models, can make a significant contribution to the total water flux.  相似文献   

7.
Hydraulic/partitioning tracer tomography (HPTT) was recently developed by Yeh and Zhu [Yeh T-CJ, Zhu J. Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones, Water Resour Res 2007;43:W06435. doi:10.1029/2006WR004877.] for estimating spatial distribution of dense nonaqueous phase liquids (DNAPLs) in the subsurface. Since discrete tracer concentration data are directly utilized for the estimation of DNAPLs, this approach solves the hyperbolic convection–dispersion equation. Solution to the convection–dispersion equation however demands fine temporal and spatial discretization, resulting in high computational cost for an HPTT analysis. In this work, we use temporal moments of tracer breakthrough curves instead of discrete concentration data to estimate DNAPL distribution. This approach solves time independent partial differential equations of the temporal moments, and therefore avoids solving the convection–dispersion equation using a time marching scheme, resulting in a dramatic reduction of computational cost. To reduce numerical oscillations associated with convection dominated transport problems such as in inter-well tracer tests, the approach uses a finite element solver adopting the streamline upwind Petrov–Galerkin method to calculate moments and sensitivities. We test the temporal moment approach through numerical simulations. Comparing the computational costs between utilizing moments and discrete concentrations, we find that temporal moments significantly reduce the computation time. We also find that tracer moment data collected through a tomographic survey alone are able to yield reasonable estimates of hydraulic conductivity, as indicated by a correlation of 0.588 between estimated and true hydraulic conductivity fields in the synthetic case study.  相似文献   

8.
Forced gradient tracer tests between two boreholes can be used to study contaminant transport processes at the small field scale or investigate the transport properties of an aquifer. Full depth tests, in which tracer samples are collected just from the discharge of the abstraction borehole, often give rise to breakthrough curves with multiple peaks that are usually attributed to different flow paths through the aquifer that can rarely be identified from the test results alone. Tests in selected levels of the aquifer, such as those between packer‐isolated sections of the boreholes, are time consuming, expensive; and the identification of major transport pathways is not guaranteed. We present a method for simultaneously conducting multiple tracer tests covering the full depth of the boreholes, in which tracer sampling and monitoring is carried out by a novel multilevel sampling system allowing high frequency and cumulative sampling options. The method is applied to a tracer test using fluorescein conducted in the multilayered sandstone aquifer beneath the city of Birmingham, UK, producing six well‐defined tracer breakthrough curves.  相似文献   

9.
临夏台钻孔系统性质的论证   总被引:3,自引:0,他引:3       下载免费PDF全文
对中国临夏台2013年至2014年两年的井水位和四分量钻孔应变资料进行了预处理以消除趋势与突跳.根据文献(Means,1982;Young and Budynas,2005),相互正交的两条测线的应变观测值之和等于面应变.文献(刘序俨等,1988)证明近地表的面应变的2/3等于体应变,因此,可由4分量钻孔应变观测值得到钻孔体应变,然后根据体应变与井水位观测资料,从时域和频域对该钻孔系统的性质进行了论证.结果表明,在时域,体应变与井水位高度负相关.钻孔系统的灵敏度为—0.1620mm/10-9.把两年中的某两个月份的两者时间坐标轴和纵轴比例尺放大,发现井水位曲线的峰/谷与体应变观测曲线的谷/峰一一对应,两者的相位滞后非常小.在频域内,本文采用Venedikov调和分析方法分别取得了井水位与体应变9个月的半日波与全日波数个波群的逐月潮汐因子与相位滞后,然后作简单计算,得到了钻孔系统对上述波群的灵敏度与相位滞后.结果表明9个月中大多数波群的灵敏度不但十分相近,且非常接近由时域得到的周年频率分量的灵敏度,但相位滞后误差较大,本文对此进行了分析,认为由反正切得到的相位滞后受计算误差影响较大,应以时域经审视所得的相位滞后接近于零为准.通过时域与频域的分析,表明井水位对体应变的响应基本是线性时不变的,论证了临夏台钻孔系统基本上满足了叠加性、齐次性与时不变性,基本上为一线性时不变系统.  相似文献   

10.
A discontinuous Galerkin (DG) finite element method is described for the two-dimensional, depth-integrated shallow water equations (SWEs). This method is based on formulating the SWEs as a system of conservation laws, or advection–diffusion equations. A weak formulation is obtained by integrating the equations over a single element, and approximating the unknowns by piecewise, possibly discontinuous, polynomials. Because of its local nature, the DG method easily allows for varying the polynomial order of approximation. It is also “locally conservative”, and incorporates upwinded numerical fluxes for modeling problems with high flow gradients. Numerical results are presented for several test cases, including supercritical flow, river inflow and standard tidal flow in complex domains, and a contaminant transport scenario where we have coupled the shallow water flow equations with a transport equation for a chemical species.  相似文献   

11.
The modified tracer gas technique is used to determine the reaeration coefficient in six different water bodies of the Itajaí River basin, three with rural land use and three in urban areas. Propane was used as the tracer gas and Rhodamine WT as the conservative tracer, providing information on dilution, mixing and dispersion. Liquefied petroleum gas was used instead of high purity propane, aimed at reducing the costs associated with the field trials. Reaeration‐rate coefficients observed in the field ranged from 25.8 to 367.7 d?1. Two data sets could be observed where smaller streams had substantially larger coefficients of between 133.1 and 367.7 d?1, while the larger streams had values ??ranging from 25.8 to 54.5 d?1. Five empirical equations were evaluated by comparing the values ??obtained in the field. The equations proposed by Tsivolgou and Wallace and Tsivoglou and Neal showed greater adherence to the values ??determined in the tests. Reaeration‐rate coefficients obtained in the field were correlated with the hydrodynamic characteristics of the watercourses, thus establishing a mathematical function through which to obtain estimates for future evaluations. The R2 value obtained using this equation was 0.959, indicating a high correlation between the calculated values ??and those estimated in the field. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
本文从时域和频域分别对福州台和永安台的体应变和井水位资料观测的一致性进行了分析,并对其力学机制进行了深入探究,在此基础上阐明了二者观测一致性的物理含义.时域内的分析结果显示:福州台体应变与井水位的相关系数为0.7939,钻孔系统的灵敏度为0.0558 mm/10-9,井水位与体应变观测曲线十分相似;永安台体应变与井水位的相关系数为-0.7543,钻孔系统的灵敏度为-0.0005 mm/10-9,井水位与体应变曲线呈镜像对称,这表明两台站的井水位与体应变观测高度相关,且二者的相位滞后近似为零.在频域内,分别对福州台2012年3—5月及永安台2014年3—5月的井水位和体应变资料进行维尼迪柯夫调和分析,分别获取半日波、全日波数个波群的逐月潮汐因子和相位滞后,并计算得到了钻孔系统的灵敏度和井水位相对于体应变的相位滞后.结果表明,3个月中大多数波群的灵敏度十分相近,而且与时域内所得年周期低频分量的灵敏度较接近,但相位滞后误差较大,这可能与采用反正切公式计算相位滞后受计算误差影响有关,即非线性的反正切公式对计算误差具有放大累积效应,因此相位滞后应以时域分析所得接近于零的结果为准.综上,时域和频域的分析结果表明,福州台和永安台的井水位对体应变的响应基本上是线性时不变的,二者观测一致性的根本原因在于两台站的承压含水层井水位观测系统基本上是满足叠加性、齐次性和时不变的物理可实现因果系统.   相似文献   

13.
地下气体运移变化的物理化学机制研究   总被引:1,自引:1,他引:1       下载免费PDF全文
高清武 《地震地质》1997,19(1):54-58
在河北省怀来县后郝窑地区,对地下气体运移变化的影响因素进行了野外模拟实验研究。选择3个试验点,对地下气体的扩散作用,物理化学影响因素及水压效应等进行了模拟实验,主要研究H2,CO2气体运移变化机制。实验研究表明,H2,CO2气体运移变化机制不尽相同,水压效应对H2,CO2等地下气体运移影响相当明显  相似文献   

14.
We present a new field measurement and numerical interpretation method (combined termed “test”) to parameterize the diffusion of trichloroethene (TCE) and its biodegradation products (DPs) from the matrix of sedimentary rock. The method uses a dual-packer system to interrogate a low-permeability section of the rock matrix adjacent to a previously contaminated borehole and uses the borehole monitoring history to establish the pretest condition. TCE and its DPs are removed from the groundwater between the packers at the onset of the testing. The parameters estimated by fitting a radial diffusion model to the concentration history and borehole concentration data, also termed back diffusion, are the tortuosity factor and sorption coefficients of TCE and DPs in the rock matrix and the TCE and DP biodegradation rate coefficients in the borehole. We demonstrate the equipment design and the interpretive method using a borehole accessing the gray mudstone at a TCE contaminated site in the Newark Basin. In this test, both nonreactive (bromide) and reactive (trichlorofluoroethene) tracers are used to constrain the estimated parameters; however, the bromide tracer was not needed to estimate the parameters in this test. The parameters estimated from the field test are consistent with values measured independently in laboratory experiments using field samples of similar lithology. From the interpretation, we compute the TCE and DP concentration distributions in the rock matrix prior to the test to illustrate how the results can be used to enhance understanding of contaminant distribution in the rock matrix.  相似文献   

15.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

16.
In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir conditions (9 MPa and 45 °C). Fluorescence microscopy and image analysis are used to quantitatively characterize bubble formation, morphology, and mobility. Observations indicate the strong influence of interfacial tension and pore-geometry on bubble growth and evolution. Most of the gas exhibits little mobility during the course of depressurization and clogs water flow paths. However, a snap-off mechanism mobilizes a small portion of the trapped gas along the water flow paths. This feature contributes to the transport of the dispersed exsolved gas phase and the formation of intermittent gas flow. A new definition of critical gas saturation is proposed accordingly as the minimum saturation that snap-off starts to produce mobile bubbles. Low mobility of the water phase and CO2 phase in exsolution is explained by formation of dispersed CO2 bubbles which block water flow and lack the connectivity to create a mobile gas phase.  相似文献   

17.
Environmental tracers, such as tritium, have generally been used to estimate aquifer recharge under natural conditions. A tritium tracer test is presented for estimating recharge under semi‐arid and irrigated conditions. The test was performed along 429 days (June 2007–August 2008) on an experimental plot located in SE Spain with drip irrigation and annual row crops (rotation of lettuce and melon), in which common agricultural practices were followed in open air. Tritiated water was sprinkled (simulated rainfall) over the plot, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure tritium concentration in soil water samples. Tritium transport, as liquid or vapor phase, was simulated with the one‐dimensional numerical code SOLVEG. Simulations show that the crop water use was below potential levels, despite regular irrigation. Continuous high water content in soil promoted a great impact of rainfall events on the aquifer recharge. The results obtained from tritium tracer test have been compared with other independent recharge assessment, soil water balance method, to evaluate the reliability of the first one. Total recharge from tracer test was 476 mm for the October 2007–September 2008 period versus 561 mm from soil water balance method for the same period, which represents 37.1% and 43.7% of the applied water (1284 mm, irrigation + precipitation), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Measurements of dissolved gases have numerous applications in ground water hydrology, and it is now possible to measure the total dissolved gas pressure in situ using a probe. Dissolved gas pressure is measured by submerging a headspace volume with a gas-permeable membrane, allowing dissolved gases in the water to equilibrate with gases in the headspace, then measuring the pressure in the headspace with a pressure transducer. Total dissolved gas pressure (TGP) probes have many potential uses in ground water studies employing dissolved gases, including: (1) determining approximate excess air levels, which may provide information about the time and location of recharge; (2) screening wells for air contamination, which can compromise the accuracy of dissolved gas tracer techniques: (3) detecting a trapped gas phase, which can significantly reduce hydraulic conductivity and impede the transport of dissolved solutes and gases; (4) enabling the use of gas-filled passive diffusion samplers for determining accurate dissolved gas concentrations; and (5) determining relative concentrations of CH4 and CO2 when they are known to be highly abundant. Although TGP probes designed for surface water have been available for several years, TGP probes suitable for ground water applications have only recently become available. Herein we present what are, to our knowledge, the first reported ground water dissolved gas data collected using a TGP probe. We also explain the basic operating principles of these probes and discuss the potential applications listed.  相似文献   

19.
Long-term monitoring solutions at contaminated sites are necessary to track plume migration and evaluate the performance of remediation efforts. Electrical resistivity imaging (ERI) can potentially provide information about plume dynamics; however, the feasibility and likelihood of success are seldom evaluated before conducting a field study. Coupling flow and transport models with geoelectrical models provide a powerful way to assess the potential effectiveness of an actual ERI field campaign. We present a coupled approach for evaluating the feasibility of monitoring nitrate migration and remediation using 4D time-lapse ERI at a legacy nuclear waste facility. This kilometer-scale study focuses on depths below the water table (∼70 m). A flow and transport model is developed to perform simulations of nitrate migration and removal via a hypothetical pump-and-treat system. A tracer injection is also simulated at the leading edge of the nitrate plume to enhance the conductivity contrast between the native subsurface and the groundwater fluids. Images of absolute bulk conductivity provide limited information concerning plume migration while time-lapse difference images, which remove the static effects of geology, provide more useful information concerning plume dynamics over time. A spatial moment analysis performed on flow and transport and ERI models matches well during the tracer injection; however, inversion regularization smoothing otherwise limits the value in terms of locating the center of mass. We find that the addition of a tracer enables ERI to characterize plume dynamics during pump-and-treat operations, and late-time ERI monitoring provides a conservative estimate of nitrate plume boundaries in this synthetic study.  相似文献   

20.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号