首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, digital surface models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub‐metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. This paper describes the development of a LiDAR post‐processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post‐processing produces a digital terrain model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR‐derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1 m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a two‐dimensional finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features (such as buildings and roads) and taller vegetation features (such as trees and hedges). This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely (no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13–30] compared the performance of dynamic-wave and diffusive-wave models and reported that diffusive-wave models under-predicted the longitudinal penetration of the flood zone due to important inertial effects. Here, we find that a relatively coarse-mesh implementation of a dynamic-wave model suffers from the same drawback because of numerical diffusion. This shows that whether diffusion is achieved through the mathematics or numerics, the effect on flood extent is similar. Finally, several methods of distributing resistance parameters (e.g., Manning n) across the Glasgow site were evaluated including methods that utilize aerial imagery-based landcover classification data, MasterMap® landcover classification data and LiDAR-based feature height data (e.g., height of shrubs or hedges). Results show that landcover data is more important than feature height data in this urban site, that shadows in aerial imagery can cause errors in landcover classification which degrade flood predictions, and that aerial imagery offers a more detailed mapping of trees and bushes than MasterMap® which can locally impact depth predictions but has little impact on flood extent.  相似文献   

3.
Airborne scanning laser altimetry (LiDAR) is an important new data source that can provide two‐dimensional river flood models with spatially distributed floodplain topography for model bathymetry, together with vegetation heights for parameterization of model friction. Methods are described for improving such models by decomposing the model's finite‐element mesh to reflect floodplain vegetation features such as hedges and trees having different frictional properties to their surroundings, and significant floodplain topographic features having high height curvatures. The decomposition is achieved using an image segmentation system that converts the LiDAR height image into separate images of surface topography and vegetation height at each point. The vegetation height map is used to estimate a friction factor at each mesh node. The spatially distributed friction model has the advantage that it is physically based, and removes the need for a model calibration exercise in which free parameters specifying friction in the channel and floodplain are adjusted to achieve best fit between modelled and observed flood extents. The scheme was tested in a modelling study of a flood that occurred on the River Severn, UK, in 1998. A satellite synthetic aperture radar image of flood extent was used to validate the model predictions. The simulated hydraulics using the decomposed mesh gave a better representation of the observed flood extent than the more simplistic but computationally efficient approach of sampling topography and vegetation friction factors on to larger floodplain elements in an undecomposed mesh, as well as the traditional approach using no LiDAR‐derived data but simply using a constant floodplain friction factor. Use of the decomposed mesh also allowed velocity variations to be predicted in the neighbourhood of vegetation features such as hedges. These variations could be of use in predicting localized erosion and deposition patterns that might result in the event of a flood. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Topographic data are increasingly available at high resolutions (<10 m) over large spatial extents to support detailed flood inundation modeling and loss estimation analyses required for flood risk management. This paper describes ParBreZo, the parallel implementation of a two-dimensional, Godunov-type, shallow-water code, to address the computational demand of high-resolution flood modeling at the regional scale (102–104 km2). A systematic approach to unstructured grid partitioning (domain decomposition) is presented, and the Single Process Multiple Data (SPMD) paradigm of distributed-memory parallelism is implemented so the code can be executed on computer clusters with distributed memory, shared memory, or some combination of the two (now common with multi-core architectures). In a fully-wetted, load-balanced test problem, the code scales very well with a parallel efficiency of close to 100% on up to 512 processes (maximum tested). A weighted grid partitioning is used to partially address the load balancing challenge posed by partially wetted domains germane to flooding applications, where the flood extent varies over time, while the partitioning remains static. An urban dam-break flood test problem shows that weighted partitions achieve a parallel efficiency exceeding 70% using up to 48 processes. This corresponds to a 97% reduction in execution time so results are obtained in a matter of minutes, which is attractive for routine engineering analyses. A hurricane storm surge test problem shows that a 10 m resolution, 12 h inundation forecast for a 40 km length of coastline can be completed in under 2 h using 512 processors. Hence, if coupled to a hurricane forecast system capable of resolving storm surge, inundation forecasts could be made at 10 m resolution with at least a 10 h lead time.  相似文献   

5.
The effects of the topographic data source and resolution on the hydraulic modelling of floods were analysed. Seven digital terrain models (DTMs) were generated from three different altimetric sources: a global positioning system (GPS) survey and bathymetry; high‐resolution laser altimetry data LiDAR (light detection and ranging); and vectorial cartography (1:5000). Hydraulic results were obtained, using the HEC‐RAS one‐dimensional model, for all seven DTMs. The importance of the DTM's accuracy on the hydraulic modelling results was analysed within three different hydraulic contexts: (1) the discharge and water surface elevation results from the hydraulic model; (2) the delineation of the flooded area; and (3) the relative sensitivity of the hydraulic model to changes in the Manning's n roughness coefficient. The contour‐based DTM was the least accurate with a root mean square error (RMSE) of 4·5 m in the determination of the water level and a variation of up to 50 per cent in the estimation of the inundated area of the floodplain. The GPS‐based DTM produced more realistic water surface elevation results and variations of up to 8 per cent in terms of the flooded area. The laser‐based model's RMSE for water level was 0·3 m, with the flooded area varying by less than 1 per cent. The LiDAR data also showed the greatest sensitivity to changes in the Manning's roughness coefficient. An analysis of the effect of mesh resolution indicated an influence on the delineation of the flooded area with variations of up to 7·3 per cent. In addition to determining the accuracy of the hydraulic modelling results produced from each DTM, an analysis of the time–cost ratio of each topographic data source illustrates that airborne laser scanning is a cost‐effective means of developing a DTM of sufficient accuracy, especially over large areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage‐discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics‐based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m‐wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90‐m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a ‘hybrid model’ rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see ‘below’ the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics‐based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Evaluation of on-line DEMs for flood inundation modeling   总被引:1,自引:0,他引:1  
Recent and highly accurate topographic data should be used for flood inundation modeling, but this is not always feasible given time and budget constraints so the utility of several on-line digital elevation models (DEMs) is examined with a set of steady and unsteady test problems. DEMs are used to parameterize a 2D hydrodynamic flood simulation algorithm and predictions are compared with published flood maps and observed flood conditions. DEMs based on airborne light detection and ranging (LiDAR) are preferred because of horizontal resolution, vertical accuracy (∼0.1 m) and the ability to separate bare-earth from built structures and vegetation. DEMs based on airborne interferometric synthetic aperture radar (IfSAR) have good horizontal resolution but gridded elevations reflect built structures and vegetation and therefore further processing may be required to permit flood modeling. IfSAR and shuttle radar topography mission (SRTM) DEMs suffer from radar speckle, or noise, so flood plains may appear with non-physical relief and predicted flood zones may include non-physical pools. DEMs based on national elevation data (NED) are remarkably smooth in comparison to IfSAR and SRTM but using NED, flood predictions overestimate flood extent in comparison to all other DEMs including LiDAR, the most accurate. This study highlights utility in SRTM as a global source of terrain data for flood modeling.  相似文献   

8.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The advent of 2D hydraulic modelling has improved our understanding of flood hydraulics, thresholds, and dynamic effects on floodplain geomorphology and riparian vegetation at the morphological-unit scale. Hydraulic concepts of bed shear stress, stream power maxima, and energy (cumulative stream power) have been used to characterize floods and define their geomorphic effectiveness. These hydraulic concepts were developed in the context of reach-averaged, 1D hydraulic analyses, but their application to 2D model results is problematic due to differences in the treatment of energy losses in 1D and 2D analyses. Here we present methods for estimating total and boundary resistance from 2D modelling of an extreme flood on a subtropical river. Hydraulic model results are correlated with observations of the flood impacts on floodplain geomorphology and the riparian vegetation to identify thresholds and compute variants of flood energy. Comparison of LiDAR data in 2011 and 2014 shows that the 2011 flood produced 2–4 m of erosion on floodplain bars that were previously forested or grass-covered. Deposition on flood levees, dunes, and chute bars was up to 3.4 m thick. Various hydraulic metrics were trialled as candidates for thresholds of vegetation disturbance. The accuracy of thresholds using metrics extracted at the flood peak (i.e. boundary resistance and stream power maxima) was similar to that using energy as a threshold. Disturbance to forest and grass on vegetated bars was associated with stream powers of >834 W/m2 and unit flows of >26 m2/s, respectively. Correlation of the hydraulic metrics with erosion and deposition depths showed no substantial improvement in using flood energy compared to metrics extracted at the flood peak for describing erosion and deposition. The extent of vegetation disturbances and morphological adjustments was limited for this extreme flood, and further 2D studies are needed to compare disturbance thresholds across different environments.  相似文献   

11.
D. Yu  S. N. Lane 《水文研究》2006,20(7):1541-1565
High‐resolution data obtained from airborne remote sensing is increasing opportunities for representation of small‐scale structural elements (e.g. walls, buildings) in complex floodplain systems using two‐dimensional (2D) models of flood inundation. At the same time, 2D inundation models have been developed and shown to provide good predictions of flood inundation extent, with respect to both full solution of the depth‐averaged Navier–Stokes equations and simplified diffusion‐wave models. However, these models have yet to be applied extensively to urban areas. This paper applies a 2D raster‐based diffusion‐wave model to determine patterns of fluvial flood inundation in urban areas using high‐resolution topographic data and explores the effects of spatial resolution upon estimated inundation extent and flow routing process. Model response shows that even relatively small changes in model resolution have considerable effects on the predicted inundation extent and the timing of flood inundation. Timing sensitivity would be expected, given the relatively poor representation of inertial processes in a diffusion‐wave model. Sensitivity to inundation extent is more surprising, but is associated with: (1) the smoothing effect of mesh coarsening upon input topographical data; (2) poorer representation of both cell blockage and surface routing processes as the mesh is coarsened, where the flow routing is especially complex; and (3) the effects of (1) and (2) upon water levels and velocities, which in turn determine which parts of the floodplain the flow can actually travel to. It is shown that the combined effects of wetting and roughness parameters can compensate in part for a coarser mesh resolution. However, the coarser the resolution, the poorer the ability to control the inundation process, as these parameters not only affect the speed, but also the direction of wetting. Thus, high‐resolution data will need to be coupled to a more sophisticated representation of the inundation process in order to obtain effective predictions of flood inundation extent. This is explored in a companion paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The finite‐volume technique is used to solve the two‐dimensional shallow‐water equations on unstructured mesh consisting of quadrilateral elements. In this paper the algorithm of the finite‐volume method is discussed in detail and particular attention is paid to accurately representing the complex irregular computational domain. The lower Yellow River reach from Huayuankou to Jiahetan is a typical meandering river. The generation of the computational mesh, which is used to simulate the flood, is affected by the distribution of water works in the river channel. The spatial information about the two Yellow River levee, the protecting dykes, and those roads that are obviously higher than the ground, need to be used to generate the computational mesh. As a result these dykes and roads locate the element interfaces of the computational mesh. In the model the finite‐volume method is used to solve the shallow‐wave equations, and the Osher scheme of the empirical function is used to calculate the flux through the interface between the neighbouring elements. The finite‐volume method has the advantage of using computational domain with complex geometry, and the Osher scheme is a method based on characteristic theory and is a monotone upwind numerical scheme with high resolution. The flood event with peak discharge of 15 300 m3/s, occurring in the period from 30 July to 10 August 1982, is simulated. The estimated result indicates that the simulation method is good for routing the flood in a region with complex geometry. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In seismic tomography the observed traveltimes or amplitudes of direct waves are inverted to obtain an estimate of seismic velocity or absorption of the section surveyed. There has been much recent interest in using cross-well traveltime tomography to observe the progress of fluids injected into the reservoir rocks during enhanced oil recovery (EOR) processes. If repeated surveys are carried out, then EOR processes may be monitored over a period of time. This paper describes the results of a simulated time-lapse tomography experiment to image the flood zone in an EOR process. Two physical models were made out of epoxy resins to simulate an essentially plane-layered sedimentary sequence containing a reservoir layer and simple geological structure. The models differed only in the reservoir layer, which was uniform in the ‘pre-flood’ model and contained a flood zone of known geometry in the ‘post-flood’ model. Data sets were acquired from each model using a cross-well survey geometry. Traveltime and amplitude tomographic imaging techniques have been applied to these data in an attempt to locate the extent of the flood zone. Traveltime tomography locates the flood zone quite accurately. Amplitude tomography shows the flood zone as a region of higher absorption, but does not image its boundaries as precisely. This is primarily because of multipathing and diffraction effects, which are not accounted for by the ray-based techniques for inverting seismic amplitudes. Nevertheless, absorption tomograms could complement velocity tomograms in real, heterogeneous reservoirs because absorption and velocity respond differently to changes in liquid/gas saturations for reservoir rocks.  相似文献   

14.
High resolution DEMs obtained from LiDAR topographic data have led to improved landform inventories (e.g. landslides and fault scarps) and understanding of geomorphic event frequency. Here we use airborne LiDAR mapping to investigate meltwater pathways associated with the Tweed Valley palaeo ice‐stream (UK). In particular we focus on a gorge downstream of Palaeolake Milfield, previously mapped as a sub‐glacial meltwater channel, where the identification of abandoned headcut channels, run‐up bars, rock‐cut terrace surfaces and eddy flow features attest to formation by a sub‐aerial glacial lake outburst flood (GLOF) caused by breaching of a sediment dam, likely an esker ridge. Mapping of these landforms combined with analysis of the gorge rim elevations and cross‐section variability revealed a two phase event with another breach site downstream following flow blockage by higher elevation drumlin topography. We estimate the magnitude of peak flow to be 1–3 × 103 m3/s, duration of the event to range from 16–155 days, and a specific sediment yield of 107–109 m3/km2/yr. We identified other outburst pathways in the lower Tweed basin that help delineate an ice margin position of the retreating Tweed Valley ice stream. The results suggest that low magnitude outburst floods are under‐represented in Quaternary geomorphological maps. We therefore recommend regional LiDAR mapping of meltwater pathways to identify other GLOFs in order to better quantify the pattern of freshwater and sediment fluxes from melting ice sheets to oceans. Despite the relatively low magnitude of the Till outburst event, it had a significant impact on the landscape development of the lower Tweed Valley through the creation of a new tributary pathway and triggering of rapid knickpoint retreat encouraging new regional models of post‐glacial fluvial landscape response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of mesh type on the accuracy and computational demands of a two-dimensional Godunov-type flood inundation model is critically examined. Cartesian grids, constrained and unconstrained triangular grids, constrained quadrilateral grids, and mixed meshes are considered, with and without local time stepping (LTS), to determine the approach that maximizes computational efficiency defined as accuracy relative to computational effort. A mixed-mesh numerical scheme is introduced so all grids are processed by the same solver. Analysis focuses on a wide range of dam-break type test cases, where Godunov-type flood models have proven very successful. Results show that different mesh types excel under different circumstances. Cartesian grids are 2–3 times more efficient with relatively simple terrain features such as rectilinear channels that call for a uniform grid resolution, while unstructured grids are about twice as efficient in complex domains with irregular terrain features that call for localized refinements. The superior efficiency of locally refined, unstructured grids in complex terrain is attributable to LTS; the locally refined unstructured grid becomes less efficient using global time stepping. These results point to mesh-type tradeoffs that should be considered in flood modeling applications. A mixed mesh model formulation with LTS is recommended as a general purpose solver because the mesh type can be adapted to maximize computational efficiency.  相似文献   

16.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrogeomorphic models allow parsimonious, fast and effective floodplain extent mapping using topographic data as the main input. Hydrogeomorphic approaches enforce the principle that floodplains are well-distinguished and unique landscape features within river corridors. We investigated the sensitivity of a hydrogeomorphic floodplain delineation algorithm, based on a hydrological power law, relating flow depth to contributing area, digital terrain model (DTM) resolution and river network hierarchy. In addition, we compared the results to other common floodplain mapping methods using standard flood-hazard maps as a reference. Taking the Arno River Basin, Italy, as a case study, our results show a dependency between the optimal power law parameters and DTM resolution, with larger parameter values required to reach optimal consistency with flood-hazard maps as DTM resolution increased. Floodplain mapping performance was also found to depend on stream order. We further tested the model consistency at a larger scale to evaluate its performance with respect to inundation maps in Hungary, Italy, Spain and the UK. Our study suggests that pre-defined power law parameters can be assumed, considering DTM resolution and stream order, supporting the use of the presented hydrogeomorphic model for large-scale floodplain mapping in ungauged basins where reference flood-hazard maps are not available.  相似文献   

18.
Shuguang Liu 《水文研究》2001,15(12):2341-2360
Simple but effective models are needed for the prediction of rainfall interception under a full range of environmental and management conditions. The Liu model was validated using data published in the literature and was compared with two leading models in the literature: the Rutter and the Gash models. The Liu model was tested against the Rutter model on a single‐storm basis with interception measurements observed from an old‐growth Douglas fir (Pseudotsuga menziesii) forest in Oregon, USA. Simulated results by the Liu model were close to the measurements and comparable to those predicted by the Rutter model. The Liu model was further tested against the Gash model on a multistorm basis. The Gash and Liu models successfully predicted long‐term interception losses from a broad range of 20 forests around the world. Results also indicated that both the Gash and the Liu models could be used to predict rainfall interception using daily rainfall data, although it was assumed in both models that there is only one storm per rain day. The sensitivity of the Liu model to stand storage capacity, canopy gap fraction and evaporation rate from wet canopy surface during rainfall was investigated. Results indicate that the Liu model has the simplest form, least data requirements and comparable accuracy for predicting rainfall interception as compared with the Rutter and the Gash models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A geomorphological instantaneous unit hydrograph (GIUH) rainfall‐runoff model was applied in a 31 km2 montane catchment in Scotland. Modelling was based on flow path length distributions derived from a digital terrain model (DTM). The model was applied in two ways; a single landscape unit response based on the DTM alone, and a two‐landscape unit response, which incorporated the distribution of saturated areas derived from field‐validated geographic information system (GIS) analysis based on a DTM and soil maps. This was to test the hypothesis that incorporation of process‐information would enhance the model performance. The model was applied with limited multiple event calibration to produce parameter sets which could be applied to a spectrum of events with contrasting characteristics and antecedent conditions. Gran alkalinity was used as a tracer to provide an additional objective measure for assessing model performance. The models captured the hydrological response dynamics of the catchment reasonably well. In general, the single landscape unit approach produced the best individual model performance statistics, though the two‐landscape unit approach provided a range of models, which bracketed the storm hydrograph response more realistically. There was a tendency to over‐predict the rising limb of the hydrograph, underestimate large storm event peaks and anticipate the hydrograph recession too rapidly. Most of these limitations could be explained by the simplistic assumptions embedded within the GIUH approach. The modelling also gave feasible predictions of stream water chemistry, though these could not be used as a basis for model rejection. Nevertheless, the study suggested that the approach has potential for prediction of hydrological response in ungauged montane headwater basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Six methods were compared for calculating annual stream exports of sulfate, nitrate, calcium, magnesium and aluminum from six small Appalachian watersheds. Approximately 250–400 stream samples and concurrent stream flow measurements were collected during baseflows and storm flows for the 1989 water year at five Pennsylvania watersheds and during the 1989–1992 water years at a West Virginia watershed. Continuous stream flow records were also collected at each watershed. Solute exports were calculated from the complete data set using six different scenarios ranging from instantaneous monthly measurements of stream chemistry and stream flow, to intensive monitoring of storm flow events and multiple regression equations. The results for five of the methods were compared with the regression method because statistically significant models were developed and the regression equations allowed for prediction of solute concentrations during unsampled storm flows. Results indicated that continuous stream flow measurement was critical to producing exports within 10% of regression estimates. For solutes whose concentrations were not correlated strongly with stream flow, weekly grab samples combined with continuous records of stream flow were sufficient to produce export estimates within 10% of the regression method. For solutes whose concentrations were correlated strongly with stream flow, more intensive sampling during storm flows or the use of multiple regression equations were the most appropriate methods, especially for watersheds where stream flows changed most quickly. Concentration–stream flow relationships, stream hydrological response, available resources and required level of accuracy of chemical budgets should be considered when choosing a method for calculating solute exports. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号