首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The migration of a contaminant from a zone of injection disposal of hazardous liquid waste in a deep-seated aquifer is considered. Because of its higher density, the polluted groundwater will accumulate under the effect of gravity in aquifer dips (depressions). A 2D-model of variable-density groundwater flow is used to determine the conditions under which the gravity force will prevent polluted groundwater from leaving depressions driven by regional current. As the result, such depressions can serve as natural traps for polluted waters. The required conditions are based on simple analytical relationships, derived from the analysis of a theoretical model of variable-density groundwater flow in an inclined confined aquifer. The obtained technique is used to estimate the efficiency of such a trap at the site of injection disposal of liquid radioactive waste from Mining and Chemical Combine in Krasnoyarsk region. The analytical estimates of the trap with the use of the proposed technique are shown to be in good agreement with the results of numerical simulation of contaminant migration.  相似文献   

2.
高放废物地质处置库选址要求围岩完整稳定,它与岩体深部地质结构密切相关,因此是场址评价中必须考虑的因素.在高放废物储库选址新区内蒙阿拉善塔木素岩体,采用可控源音频大地电磁法进行了剖面探测.分析了典型测深曲线,区分了地质构造和完整围岩的响应特征;针对高放废物预选场址的特点,对原始数据进行了处理;结合已有地质、钻井及测井资料完成了解释;结果表明,利用可控源音频大地电磁法有效地查明了该地岩体内部结构,该岩体存在裂隙和破碎,完整性欠佳.  相似文献   

3.
Significant attention has been given to hyporheic water fluxes induced by hydromorphologic processes in streambeds and the effects they have on stream ecology. However, the impact of hyporheic fluxes on regional groundwater flow discharge zones as well as the interaction of these flows are much less investigated. The groundwater-hyporheic interactive flow not only governs solute mass and heat transport in streams but also controls the retention of solute and contamination following the discharge of deep groundwater, such as naturally occurring solutes and leakage from geological waste disposal facilities. Here, we applied a physically based modeling approach combined with extensive hydrologic, geologic and geographical data to investigate the effect of hyporheic flow on groundwater discharge in the Krycklan catchment, located in a boreal landscape in Sweden. Regional groundwater modeling was conducted using COMSOL Multiphysics by considering geologic heterogeneity and infiltration constraint of the groundwater circulation intensity. Moreover, the hyporheic flow was analyzed using an exact spectral solution accounting for the fluctuating streambed topography and superimposed with the regional groundwater flow. By comparing the discharge flow fields with and without consideration of hyporheic flows, we found that the divergence of the discharge was substantially enhanced and the distribution of the travel times of groundwater was significantly shifted toward shorter times due to the presence of hyporheic flow. Particularly important is that the groundwater flow paths contract near the streambed interface due to the hyporheic flow, which leads to a phenomenon that we name “fragmentation” of coherent areas of groundwater upwelling in pinhole-shaped stream tubes.  相似文献   

4.
Managing nonpoint-source (NPS) pollution of groundwater systems is a significant challenge because of the heterogeneous nature of the subsurface, high costs of data collection, and the multitude of scales involved. In this study, we assessed a particularly complex NPS groundwater pollution problem in Michigan, namely, the salinization of shallow aquifer systems due to natural upwelling of deep brines. We applied a system-based approach to characterize, across multiple scales, the integrated groundwater quantity–quality dynamics associated with the brine upwelling process, assimilating a variety of modeling tools and data—including statewide water well datasets scarcely used for larger scientific analysis. Specifically, we combined (1) data-driven modeling of massive amounts of groundwater/geologic information across multiple spatial scales with (2) detailed analysis of groundwater salinity dynamics and process-based flow modeling at local scales. Statewide “hotspots” were delineated and county-level severity rankings were developed based on dissolved chloride (Cl) concentration percentiles. Within local hotspots, the relative impact of upwelling was determined to be controlled by: (1) streams—which act as “natural pumps” that bring deeper (more mineralized) groundwater to the surface; (2) the occurrence of nearly impervious geologic material at the surface—which restricts fresh water dilution of deeper, saline groundwater; and (3) the space–time evolution of water well withdrawals—which induces slow migration of saline groundwater from its natural course. This multiscale, data-intensive approach significantly improved our understanding of the brine upwelling processes in Michigan, and has applicability elsewhere given the growing availability of statewide water well databases.  相似文献   

5.
Natural attenuation landfill sites continue to be the preferred method of domestic waste disposal in the Precambrian Shield regions of Ontario due to economic factors. The main challenge in siting these landfills is ensuring that there will be no adverse impact on off-site water resources. Impact risk assessments are generally based on estimated volumes and strengths of chloride in the leachate. While volumes can be estimated using simple water balances, peak chloride concentration predictions are based on judgment and are quite variable. Since design chloride strengths dictate the size of the required attenuation zone, overestimating concentrations will typically make it impossible to find a suitable site, while underestimating concentrations increases the potential for adverse off-site impacts occurring.
Hydrogeological data from active and closed landfills in the Precambrian Shield region were collected to help develop a reliable method of predicting peak chloride concentrations in leachate. This study focused on 21 sites located on relatively permeable sandy soils since landfills underlain by low permeability clayey soils retain leachate similar to lined facilities.
Linear regression analyses were conducted to determine if source chloride concentrations at the "sand" sites are significantly influenced by waste thickness, fill area, waste volume, waste deposition rate, hydraulic conductivity, upgradient flow length, depth to the water table, and moisture surplus.
A strong relationship (R = 0.957) was found to exist between source chloride concentrations and waste volume. This empirical volume versus chloride regression equation can be used as the basis for establishing design chloride concentrations at new natural attenuation landfills developed over sandy soils in the Precambrian Shield regions of Ontario. An alternative risk assessment approach is required for sites developed over clay soils.  相似文献   

6.
Mass balance calculations and hydrodynamics of groundwater flow suggest that the solutes in brines of the coastal sabkha aquifer from the Emirate of Abu Dhabi are derived largely from ascending geologic brines into the sabkha from the underlying formations. Solute interpretation for the ascending brine model (ABM) was based on two independent but secondary lines of evidence (solute ratios and solute fluxes). In the current study, direct primary evidence for this ABM was provided through analyses of δ81Br, δ37Cl, and 87Sr/86Sr. Different solute histories of geologic brine and sea water provide an “isotopic fingerprint” that can uniquely distinguish between the two possible sources. Samples from the coastal sabkha aquifer of Abu Dhabi were determined to have a mean δ81Br of 1.17‰ that is statistically equal, at the 95% confidence level, to the mean of 1.11‰ observed in the underlying geologic brine and statistically different than sea water. Similarly, the δ37Cl in sabkha brine has a mean of 0.25‰ and is statistically equal to a mean of 0.21‰ in the underlying geologic brines at the 95% confidence level and statistically different from sea water. Also, dissolved strontium isotope data are consistent with the ABM and even with the complex set of processes in the sabkha, the variance in strontium isotope results is similar to the geologic brine. These observations provide primary direct evidence consistent that the major source of these solutes (and presumably others in the aquifer) is from discharging geologic brines, not from adjacent sea water.  相似文献   

7.
Lithium isotope geochemistry and origin of Canadian shield brines   总被引:3,自引:0,他引:3  
Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.  相似文献   

8.
Three case studies from New Mexico illustrate methods by which aquifers can be classified for purposes of the Federal Underground Injection Control program. The principal technique involves preparation of hydrogeologic maps or cross sections which display information on the permeability of rock units and the dissolved solids content of formation fluids. Because deep water wells are lacking in most areas, the analysis normally requires considerable interpretation of geological and geophysical logs collected by energy and mineral companies, plus use of a general model or concept about regional hydrogeology. Injection of waste fluids into aquifers containing water with less than 10,000 mg/1 dissolved solids is not allowed unless an exemption is justified by economic, engineering and other factors. Based on the case studies, regulatory exemptions will be possible for aquifers which are hydrocarbon or mineral-producing, or which are important for brine disposal purposes.  相似文献   

9.
A number of experimental studies have tackled the issue of solute transport parameter assessments either in the laboratory or in the field. But yet, the behavior of a plume in the field under density driven forces, is not well known due to possible development of instabilities. Some field tracer tests on the fate of plumes denser than native groundwater such as those encountered under waste disposal facilities, have pointed out the processes of sinking and splitting at the early stage of migration. The process of dispersion was widely investigated, but the range of dispersivity values obtained from either experimental tests, or numerical and theoretical calculations is still very large, even for the same type of aquifers. These discrepancies were considered to be essentially caused by soil heterogeneities and scale effects. In the meantime, studies on the influence of sinking and fingering have remained more scarce. The objective of the work is to analyze how transport parameters such as dispersivities can be affected by unstable conditions, which lead to plume sinking and fingering. A series of tracer tests were carried out to study under natural conditions, the transport of a dense chloride solution injected in a shallow two-layered aquifer. Two types of experiments were performed: in the first type, source injection was such that the plume could travel downward from one layer to the other of higher pore velocity, and in the second one, the migration took place only in the faster layer. The results suggest some new insights in the processes occurring at the early stages of a dense plume migration moving in a stratified aquifer under groundwater fluctuations, which can be summarized through the following points: (i) Above a stability criterion threshold, a fingering process and a multi modal plume transport take place, but local dispersivities can be cautiously derived, using breakthrough curves matching. (ii) When water table is subject to some cycling or rising, the plume can be significantly distorted in the transverse direction, leading to unusual values of the ratio between longitudinal and transverse dispersivities. (iii) Under stable conditions, for example in the case of straightforward injection in the faster aquifer layer, longitudinal dispersivity is greater than the transverse component as usually encountered, and the obtained transport parameters are closed to macro dispersivity values, which reach their asymptotic limit at very short distances. (iv) The classical scale effect about the varying dispersivity at short distances could be a process mainly due to the distance required for a plume stabilization.  相似文献   

10.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

11.
A 3-D velocity structure of the crust has been constructed for almost the entire Baltic Shield area from data of extensive deep seismic studies on the shield. The construction involved a revision of all primary data (record sections and observed traveltime curves) obtained in this region over 50 years of research. Comparative analysis of wave fields revealed that three reference reflectors traceable throughout the shield area are K1 (a boundary velocity of 6.4–6.5 km/s), K2 (~6.8 km/s), and the mantle surface M (8.0–8.2 km/s). The resulting 3-D velocity structure is represented in the form of structural maps of these surfaces and a velocity distribution scheme in the upper crust. Using this general basic model, seismic cross sections are constructed by means of mathematical modeling along all profiles. They showed that, in addition to the main layers and reflectors above the K1 boundary, a lower velocity layer is traceable almost everywhere and the majority of deep faults flatten out toward this layer. On the whole, lateral variations in the velocity structure of the crust are small up to a depth of 40 km. The variations are most significant in the M topography: its average depth being 40–45 km, two deep (down to 50–60 km) depressions exist in southern Finland and the Baltic region. The origin of this depression filled with high velocity (7.2–7.4 km/s) rocks remains unclear.  相似文献   

12.
A test case has been developed for three-dimensional simulations of variable-density flow and solute transport in discretely-fractured porous media. The simulation domain is a low-permeability porous matrix cube containing a single non-planar fracture. The initial solute concentration is zero everywhere. A constant solute concentration is assigned to the top of the domain, which increases near-top fluid density and induces downward density-driven flow. The test case is therefore comparable to downwelling of a dense brine below a saline disposal basin or a waste repository. Numerous fingers and distinct convection cells develop early in the fracture but the fingers later coalesce and convection becomes less apparent. To help test other variable-density flow and transport models, results of the test case are presented both qualitatively (concentration contours and velocity fields) and quantitatively (penetration depth, mass flux, total mass stored, maximum fracture and matrix velocity).  相似文献   

13.
From an analysis of many seismic profiles across the stable continental regions of North America and northern Europe, the crustal and upper mantle velocity structure is determined. Analysis procedures include ray theory calculations and synthetic seismograms computed using reflectivity techniques. TheP wave velocity structure beneath the Canadian Shield is virtually identical to that beneath the Baltic Shield to a depth of at least 800 km. Two major layers with a total thickness of about 42 km characterize the crust of these shield regions. Features of the upper mantle of these region include velocity discontinuities at depths of about 74 km, 330 km, 430 km and 700 km. A 13 km thickP wave low velocity channel beginning at a depth of about 94 km is also present.A number of problems associated with record section interpretation are identified and a generalized approach to seismic profile analysis using many record sections is described. TheS wave velocity structure beneath the Canadian Shield is derived from constrained surface wave data. The thickness of the lithosphere beneath the Canadian and Baltic Shields is determined to be 95–100 km. The continental plate thickness may be the same as the lithospheric thickness, although available data do not exclude the possibility of the continental plate being thicker than the lithosphere.  相似文献   

14.
Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or estimation of these energy inputs for a given river channel environment. Understanding spatial patterns of stream temperature at a landscape scale requires predicting how this environment varies through space, and under different atmospheric conditions. At the landscape scale, air temperature is often used as a surrogate for the dominant controls on stream temperature. In this study we show that, in regions where groundwater inputs are key controls and the degree of groundwater input varies in space, air temperature alone is unlikely to explain within-landscape stream temperature patterns. We illustrate how a geologic template can offer insight into landscape-scale patterns of stream temperature and its predictability from air temperature relationships. We focus on variation in stream temperature within headwater streams within the McKenzie River basin in western Oregon. In this region, as in other areas of the Pacific Northwest, fish sensitivity to summer stream temperatures continues to be a pressing environmental issue. We show that, within the McKenzie, streams which are sourced from deeper groundwater reservoirs versus shallow subsurface flow systems have distinct summer temperature regimes. Groundwater streams are colder, less variable and less sensitive to air temperature variation. We use these results from the western Oregon Cascade hydroclimatic regime to illustrate a conceptual framework for developing regional-scale indicators of stream temperature variation that considers the underlying geologic controls on spatial variation, and the relative roles played by energy and water inputs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
试论复杂地质体的油气地震勘探   总被引:22,自引:11,他引:11       下载免费PDF全文
论述了我国油气勘探工作中反射地震的发展历程,指出地震勘探中信噪比与分辨率之间的矛盾,针对中国前新生代海相残留盆地具有埋藏深、演化历史长、经受地质作用多,以致地表和地下条件都很复杂的特点,〖HT5”H〗提出了复杂地质体油气地震勘探的理念和方法途径〖HT5”K〗.我国油气资源多存储于复杂地质体如生物礁、鲕滩、风化壳、古潜山等储集体之中.不能完全搬用陆相油气勘探的经验.应在活动论大地构造理论指导下,根据“区域约束局部,深层制约浅层”的勘探经验,探索测区的时空演化规律,设计复杂地质体的观测系统,采取高密度连续采集技术,获取反射地震资料,再进行高分辨率与高信噪比的处理,从而使地震采集、处理与解释一体化,减轻山地采集困难,获取深部成像资料,在新的高度上寻找在复杂地质体中的油气资源.使地震勘探能在中国油气二次创业中发挥重要作用.  相似文献   

16.
Isotopic mapping of groundwater perchlorate plumes   总被引:1,自引:0,他引:1  
Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources.  相似文献   

17.
The review describes in broad terms the development of regional EM studies during the last five-six years. Large simultaneous magnetometer arrays, broadband and dense profiling with five component instruments, the use of remote reference techniques and in-field data processing have increased both the number and the quality of EM surveys. The increase has been strong all over the world.An extensive list of references, divided geographically, is presented. Selected examples of regional resisitivity-versus-depth curves are shown for Africa, the Baikal region, the Baltic Shield, the Canadian Shield, the Carpathian regions, the Central Andes, Iceland, India, the Juan de Fuca Plate, the Münsterland Basin, the Rio Grande rift, the Scottish Caledonides, the Tasman Sea, and for the United States in general. Because of the influence of tectonic settings and the metamorphic grade of rocks, only qualitative aspects of the results are relevant.Classical array studies, especially in Australia, in the Carpathian regions, in India, in North Germany and in Scotland have been reinterpreted and completed with more accurate 2D modelling and dense MT profiling. In the USA and Canada also new regions have been surveyed extensively. New regional EM work has been conducted extensively on the Baltic Shield and in Central and North Africa, Siberia, China, in the areas around the Caspian and Black Seas and in South America.The newest studies are supported by or compared with other geophysical data, which also are used in extrapolating for missing EM data density. There are several successful large-scale projects in operation: the European Geotraverse (EGT), the KAPG International Geotraverses and the EMSLAB project (with its first preliminary results). Regional EM studies have been increasingly applied to geothermal, hydrocarbon and mineral prospecting as well as local structural studies, e.g. studies of sites for nuclear waste disposal.  相似文献   

18.
The hydrogeological conditions of the Kuznetsk Coal Basin (Kuzbass) region are considered. Estimates of the safe yield and natural groundwater resources for this region are given. Better-quality groundwater are shown to be available for public water supply to some localities in Kuzbass. The applicability of mathematical modeling to forecasting the changes in the hydrogeological conditions caused by flooding of unprofitable mines is discussed.  相似文献   

19.
In 1984, the Illinois Department of Energy and Natural Resources was required to assess the regulations and practices of the Illinois Underground Injection Control (UIC) program as it relates to Class I hazardous waste disposal wells. Nine injection wells, including two standbys (one inactive), are currently in operation at seven sites in the state. These wells range in depth from 1540 to 5524 feet (470 to 1683m; most inject wastes into porous carbonate formations (two wells inject into a thick sandstone). In 1984, approximately 300 million gallons (1.1 billion liters) of industrial wastes were disposed of in these wells. Acids were the most common waste disposed of, although water made up 70 to 95 percent of the wastes by volume. Illinois has been granted primacy in operating this program.
The geologic environment, consisting of the unit accepting the waste and confining units lying above and below, has the capacity to accept the waste, to retain it, and to protect all underground sources of drinking water (USDW) from contamination by its injection. The geology of Illinois is relatively simple and includes disposal zones and associated confining units suitable for deep-well injection across the central two-thirds of the state.
The regulatory structure for Class I injection wells is generally adequate in concept and scope to ensure containment of injected wastes and to safeguard underground sources of drinking water in Illinois. There is a need to update and strengthen selected portions of the regulatory practices in the areas of waste sampling protocol, chemical analysis of collected waste samples, and evaluation of injection well testing and monitoring data.
A number of technologies exist that can treat and dispose of most hazardous and non-hazardous waste streams. Each of these technologies has associated with it economic, environmental and societal impacts.  相似文献   

20.
The conservative nature of chloride (Cl?) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin‐wide scale. The creation of Cl? isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin‐wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross‐formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl? within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号