共查询到3条相似文献,搜索用时 2 毫秒
1.
Michael J. Tompkins Juan Luis Fernández Martínez Zulima Fernández Muñiz 《Geophysical Prospecting》2013,61(1):28-41
A new uncertainty estimation method, which we recently introduced in the literature, allows for the comprehensive search of model posterior space while maintaining a high degree of computational efficiency. The method starts with an optimal solution to an inverse problem, performs a parameter reduction step and then searches the resulting feasible model space using prior parameter bounds and sparse‐grid polynomial interpolation methods. After misfit rejection, the resulting model ensemble represents the equivalent model space and can be used to estimate inverse solution uncertainty. While parameter reduction introduces a posterior bias, it also allows for scaling this method to higher dimensional problems. The use of Smolyak sparse‐grid interpolation also dramatically increases sampling efficiency for large stochastic dimensions. Unlike Bayesian inference, which treats the posterior sampling problem as a random process, this geometric sampling method exploits the structure and smoothness in posterior distributions by solving a polynomial interpolation problem and then resampling from the resulting interpolant. The two questions we address in this paper are 1) whether our results are generally compatible with established Bayesian inference methods and 2) how does our method compare in terms of posterior sampling efficiency. We accomplish this by comparing our method for two electromagnetic problems from the literature with two commonly used Bayesian sampling schemes: Gibbs’ and Metropolis‐Hastings. While both the sparse‐grid and Bayesian samplers produce compatible results, in both examples, the sparse‐grid approach has a much higher sampling efficiency, requiring an order of magnitude fewer samples, suggesting that sparse‐grid methods can significantly improve the tractability of inference solutions for problems in high dimensions or with more costly forward physics. 相似文献
2.
Ross [Ross PJ. Modeling soil water and solute transport – fast, simplified numerical solutions. Agron J 2003;95:1352–61] developed a fast, simplified method for solving Richards’ equation. This non-iterative 1D approach, using Brooks and Corey [Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrol. papers, Colorado St. Univ., Fort Collins; 1964] hydraulic functions, allows a significant reduction in computing time while maintaining the accuracy of the results. The first aim of this work is to confirm these results in a more extensive set of problems, including those that would lead to serious numerical difficulties for the standard numerical method. The second aim is to validate a generalisation of the Ross method to other mathematical representations of hydraulic functions. 相似文献
3.
In this paper, we study the uncertainty quantification in inverse problems for flows in heterogeneous porous media. Reversible jump Markov chain Monte Carlo algorithms (MCMC) are used for hierarchical modeling of channelized permeability fields. Within each channel, the permeability is assumed to have a log-normal distribution. Uncertainty quantification in history matching is carried out hierarchically by constructing geologic facies boundaries as well as permeability fields within each facies using dynamic data such as production data. The search with Metropolis–Hastings algorithm results in very low acceptance rate, and consequently, the computations are CPU demanding. To speed-up the computations, we use a two-stage MCMC that utilizes upscaled models to screen the proposals. In our numerical results, we assume that the channels intersect the wells and the intersection locations are known. Our results show that the proposed algorithms are capable of capturing the channel boundaries and describe the permeability variations within the channels using dynamic production history at the wells. 相似文献