首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

2.
Several Mio-Pliocene aged lignite seams occur as part of a non-marine transgressive sequence in the Elhovo graben in south-eastern Bulgaria. The present study is focused on 45 samples collected from three boreholes in the eastern part of the basin. Petrographic data along with ash and sulphur contents were used in order to determine the lateral and vertical variations of the coal facies and depositional environment of the Elhovo lignite.The lignite seams accumulated in a rheotrophic, low-lying mire with high pH value and are characterized by high ash yields and sulphur contents. Despite of the neutral to weakly alkaline environment the bacterial activity was limited and the tissue preservation and gelification were mainly controlled by the redox conditions.Vegetation rich in decay resistant conifers dominated in the Elhovo basin together with mesophytic angiosperm species. The absence of algal remains and sapropelic coal indicated that open water areas were not present during peat accumulation. The latter processed in an environment, characterized by low subsidence rate, in which prior to the burial the woods were subjected to severe mechanical destruction. According to our interpretation, the enhanced impregnation of the tissues bacteria and fungi played only a secondary role in the process of humification. The lignite from borehole 122 and partly from BH 145 deposited in an environment characterized by relatively low (ground)water table, whereas to the south an area dominated by a flooded forest swamp (BH 104) formed. This is suggested by the better tissue preservation and gelification of the organic matter in BH 104. The vertical variation of the maceral composition in the studied lignite is interpreted as a consequence of vegetational changes, rather than to changes in the depositional environment. The low contents of inertinite macerals indicate that despite of the low water level the environment was relatively wet and the thermal and oxidative destruction of the tissues was limited.Peat accumulation was terminated by a major flooding event and a short term establishment of a lake. In contrast to the West Maritsa basin, no seam formed in the Elhovo basin during the filling stage of the lake.  相似文献   

3.
To understand the geochemical characteristics of the No.9 coal in the Daheng Mine of the Ningwu coalfield, the trace element analysis was conducted through X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). The sedimentary environment was discussed according to the element geochemical parameters. The results show that Li, Ga, Hf, Zr, Nb, Th, and Ta are slightly enriched in the No. 9 coal of Daheng Mine. The average value of the rare earth elements and yttrium (∑REY) in coal here is 144.20 μg/g (excluding parting), which is higher than the average value of ∑REY in the world ’s coal and China ’s coal. The light rare earth elements (LREY) are enriched. The content of Eu was 0.12–2.10 μg/g with an average of 0.57 μg/g, and the Eu is obviously negatively abnormal. Most of the trace elements in the coal are positively correlated with the ash content, which shows that the occurrence of these trace elements is related to inorganic minerals. The results of sequential chemical extraction experiments show that rare earth elements mainly exist in coal in the form of aluminosilicate. The value of the Sr/Ba and the content of S reflect that the coal-forming environment was influenced by seawater. The values of V/Cr and Ni/Co reflect that the peat swamp is in an anaerobic environment and a strongly reducing environment during the coal-forming period.  相似文献   

4.
Environmental legislation has had significant impact on coal utilization, especially coal combustion for power generation, in limiting emissions of potentially hazardous materials to the environment. For the most part, such emissions derive from the inorganic constituents in coal. However, as such legislation becomes ever more encompassing, it has increased the need to understand better the behavior of the inorganic species in coal processing to ensure, in part, that such legislation is not unduly burdensome. Consequently, it has led to significant development of new models for the behavior of inorganics in coal combustion and a complementary enhancement of many analytical methods for determining inorganics in coal.In this paper, analytical methods for inorganics in coal are reviewed on three fronts: (i) methods for determining elemental concentrations; (ii) methods for determining the mineralogy of coals; and (iii) methods for determining modes of occurrence (speciation) of trace elements in coal. The concept of association with respect to mineral–maceral and mineral–mineral occurrences is also discussed. Where possible, comparison of different analysis methods has been made by reference to data on well-characterized suites of coals, such as the Argonne premium coal samples.Incremental enhancements will continue to be made in analytical methods for elemental concentrations; however, major improvements are needed in the other two areas. There is a great need to verify and corroborate by direct speciation methods, the many inferences made by indirect methods regarding trace element speciation. Also, improvements in the measurement of mineral association and its integration into the coal mineral analysis by means of the computer-controlled scanning electron microscopy (CCSEM) would be a significant advance. Accurate determinations of both association and coal mineralogy would lead to significant and much-needed refinements of models for the behavior of inorganics in both coal cleaning processes and coal combustion.  相似文献   

5.
Sulphide and carbonate minerals from nine bituminous coal seams of a Paralic Series were investigated by means of polished-section microscopy, scanning electron microscopy and absorption spectral analyses. In addition to syngenetic accumulations of kaolinite, illite and quartz, diagenetic veinlets of subhedral pyrite and marcasite most often occur in vitrinite clast fissures and in post-tectonic fissures, nests and lenses with fusinite. Epigenetic anhedral and subhedral grains of ankerite, dolomite, siderite and calcite are also frequently found in post-tectonic veins. Pyrite replaced some of the marcasite grains and it dominates in older coal seams in the Flora Beds as compared with the Grodziec Beds. Occasionally there are anhedral and subhedral galena, sphalerite and chalcopyrite grains among coal macerals as well as cerussite among post-tectonic carbonate veins. They all represent the only minerals that are abundant in definite chalcophile elements (Cd, Co, Cu, Ni, Pb, Zn). In addition to the minerals just mentioned, the elements occurred in pyrite and ankerite grains, which contained inclusions of fusinite and other minerals (among others, clay and carbonate minerals in pyrite, pyrite in carbonates). Although there is a low content of minerals accumulating Cd, Co, Cu, Ni, Pb and Zn, the minerals significantly influence the average concentration of elements in the coal seams. In the Grodziec Beds, mineral matter, especially carbonates and sulphides, determines (>50%) the concentration of Cd, Cu, Pb and Zn in coal. The basic part of Cd, Co and Ni in the coal seams of the Grodziec Beds and of Co, Cu, Ni, Pb and Zn in coal seams of the Flora Beds originates from organic matter. These regularities can be important, from an ecological perspective, in stating whether the coals investigated are useful for combustion and in chemical processing.  相似文献   

6.
In this study, we examine the variations in rare earth elements (REE) from the Lower Kittanning coal bed of eastern Ohio and western Pennsylvania, USA, in an attempt to understand the factors that control mineral matter deposition and modification in coal, and to evaluate possible REE mixed exposure hazards facing underground mine workers. The results of this study suggest that the Lower Kittanning coal mineral matter is derived primarily from a clastic source similar to that of the shale overburden. While highly charged cations like silicon, aluminum, and titanium remained relatively immobile within the coal mineral matter, iron (primarily as pyrite) was added from nonclastic sources, either during deposition of the coal mire vegetation or subsequent to burial. Other mobile cations (e.g., alkali and alkaline earth elements) appear to have been added to and/or leached from the originally deposited clastic mineral matter. Most of the sulfur in the Lower Kittanning coal bed is bound as FeS2 in the mineral matter, but a majority of samples contain a small excess of S that is most likely organically bound.In general, the total rare earth element content (TREE) in coal ash is greater than that in the shale overburden. If the primary source of mineral matter is the same as that for the overlying shale, then REE must have been enriched in the coal mineral matter subsequent to deposition. The total rare earth element content of Lower Kittanning coals correlates strongly with Si concentration ([TREE]≈0.0024 [Si]), which provides a threshold for evaluating possible mixed exposure health effects. Chondrite-normalized REE patterns reveal a shale-like light rare earth element (LREE) enrichment for the coal, similar to that of the shale overburden, again suggesting a primarily clastic REE source. However, when normalized to the shale overburden, most of the coal ash samples display a small but distinct heavy rare earth element (HREE) enrichment. We surmise that the HREE were added and/or preferentially retained during epigenesis, possibly associated with groundwater flow through the coal unit, but not necessarily in close association with the addition of iron. At least some of the “excess” HREE could be organically bound within the Lower Kittanning coal.  相似文献   

7.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

8.
This paper discusses the mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. The results show that the vitrinite reflectance (0.58%) is lowest and the proportions of inertinite and liptinite (37.4% and 7.1%, respectively) in the No. 6 Coal of the Junger Coalfield are highest among all of the Late Paleozoic coals in the Ordos Basin. The No. 6 Coal may be divided vertically into four sections based on their mineral compositions and elemental concentrations. A high boehmite content (mean 6.1%) was identified in the No. 6 Coal. The minerals associated with the boehmite in the coal include goyazite, rutile, zircon, and Pb-bearing minerals (galena, clausthalite, and selenio-galena). The boehmite is derived from weathered and oxidized bauxite in the weathered crust of the underlying Benxi Formation (Pennsylvanian). A high Pb-bearing mineral content of samples ZG6-2 and ZG6-3 is likely of hydrothermal origin. The No. 6 coal is enriched in Ga (44.8 μg/g), Se (8.2 μg/g), Sr (423 μg/g), Zr (234 μg/g), REEs (193.3 μg/g), Hg (0.35 μg/g), Pb (35.7 μg/g), and Th (17.8 μg/g). Gallium and Th in the No. 6 Coal mainly occur in boehmite, and the Pb-bearing selenide and sulfide minerals contribute not only to Se and Pb contents in the coal, but also probably to Hg content. A high Zr content is attributed to the presence of zircon, and Sr is related to goyazite. The REEs in the coal are supplied from the sediment-source region, and the REEs leached from the adjacent partings by groundwater.  相似文献   

9.
王梦玺  陈炳龙  焦建刚 《岩石学报》2018,34(8):2223-2244
坡北杂岩体位于塔里木板块东北缘北山裂谷带,主要由橄榄岩相、单辉辉石岩相、二辉岩相、辉长岩相、苏长岩相和辉长苏长岩相组成。坡一岩体中硫化物矿体赋存于超镁铁质岩中,而坡东岩体中硫化物矿体赋存于辉长苏长岩相中。坡一和坡东岩体不同岩相中单斜辉石的MgO和CaO含量、斜长石的An值和SiO_2含量连续变化且呈负相关,说明二者可能是同一原始岩浆分离结晶的产物。根据前人计算的原始岩浆成分,我们利用MELTS软件模拟了坡北杂岩体的分离结晶过程。结果表明矿物结晶顺序为:橄榄石→橄榄石+单斜辉石→橄榄石+单斜辉石+斜长石→单斜辉石+斜长石+斜方辉石,与岩相观察一致。坡北杂岩体原始岩浆经过20%分离结晶达到S饱和而发生早期硫化物熔离,形成坡一岩体中矿体。因此,在利用具有最高Fo值(90.9mol%)的橄榄石成分进行的模拟中,坡一岩体早期结晶的纯橄榄岩中橄榄石成分与分离结晶趋势线一致,而斜长橄榄岩中橄榄石成分低于趋势线,可能形成于早期硫化物熔离之后。随后岩浆中S再一次不饱和,但坡一岩体橄榄单辉辉石岩和辉长岩中橄榄石Fo和Ni含量在分离结晶趋势线之下,同时坡东岩体不含矿岩石中铂族元素总量主要在8.9×10~(-9)~29.0×10~(-9)之间,且相对于Ni和Cu明显亏损,说明在岩浆分离结晶晚期再次发生硫化物熔离,而且可能是地壳混染引起的,并形成了坡东岩体中的硫化物矿体。坡东岩体橄榄二辉岩和橄榄辉长苏长岩中橄榄石Fo值(74.5mol%~81.0mol%)较低,但变化范围较大,且Fo和Ni呈负相关关系,这可能是由于橄榄石和硫化物熔体在不平衡状态下发生成分交换造成的。坡北杂岩体超镁铁质岩石中单斜辉石Ti O2含量为0.21%~0.83%,阳离子中呈四次配位的Al(AlZ)为0.8mol%~7.8mol%,与裂谷环境堆晶岩中单斜辉石成分相似。因此,坡北杂岩体可能形成于和塔里木二叠纪地幔柱活动相关的裂谷环境。然而,超镁铁质岩石全岩Nd同位素指示其来源于亏损地幔,并不是地幔柱物质熔融的直接产物。纯橄榄岩和异剥橄榄岩La/Sm,Sm/Yb和La/Yb比值指示其源区为尖晶石二辉橄榄岩地幔。因此,坡北杂岩体源区应为浅部以尖晶石二辉橄榄岩为主的亏损岩石圈地幔,地幔柱在源区部分熔融过程中提供了大量的热。  相似文献   

10.
The ash yield and concentrations of twenty-four minor and trace elements, including twelve potentially hazardous trace elements were determined in Mukah coal from Sarawak, Malaysia. Comparisons made to the Clarke values show that Mukah coal is depleted in Ag, Ba, Be, Cd, Co, Mn, Ni, Se, U, and V. On the other hand, it is enriched in As, Cr, Cu, Pb, Sb, Th, and Zn. Among the trace elements studied, V and Ba are associated predominantly with the clay minerals. Manganese, Cr, Cu, Th, and Ni are mostly bound within the aluminosilicate, sulphide and/or carbonate minerals in varying proportions, though a portion of these elements are also organically bound. Arsenic, Pb and Sb are mostly organically bound, though some of these elements are also associated with the sulphide minerals. Zinc is associated with both the organic and inorganic contents of the coal. Among the potentially hazardous trace elements, Be, Cd, Co, Mn, Ni, Se, and U may be of little or no health and environmental concerns, whereas As, Cr, Pb, Sb and Th require further examination for their potential health and environmental concerns. Of particular concern are the elements As, Pb and Sb, which are mostly organically bound and hence cannot be removed by physical cleaning technologies. They escape during coal combustion, either released as vapours to the atmosphere or are adsorbed onto the fine fly ash particles.  相似文献   

11.
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (<1%) Danville Coal Member of the Dugger Formation (Pennsylvanian) and the other mines the high-sulfur (>5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal.  相似文献   

12.
Germanium distribution in coal has long been a topic of interest. The enrichment of Ge near margins of coals, including the margins of partings within the coal, has been noted in many coals from numerous coalfields throughout the world. In this paper, a summary of literature on Ge geochemistry on the upper and lower margins of coal seams, with special emphasis on the literature of Russia, and the former Soviet Union, and Japan, is presented.  相似文献   

13.
14.
Coal being a limited source of energy, extraction of energy from other sources like lignite, coal-refuse, and biomass is being attempted worldwide. The minerals and inorganic elements present in fuel feeds pose different technological and environmental concerns. Lignite ash, refuse ash, and biomass ash collected from Indian power plants burning lignite, coal-refuse, and mustard stalk, respectively, were analyzed for physico-chemical characteristics and trace elements. The lignite ash has high SiO2, CaO, MgO, Al2O3, and SO3; the refuse ash has high SiO2 and Fe2O3, but low SO3; the biomass ash has high SiO2 (but low Al2O3), and high CaO, MgO, K2O, Na2O, SO3, and P2O5. A substantial presence of chloride (2.1%) was observed in the biomass ash. Quartz is the most abundant mineral species. Other minerals are mullite, hematite, gehlenite, anhydrite, and calcite in the lignite ash; orthoclase in the refuse ash; albite, sanidine, gehlenite, anhydrite, and calcite in the biomass ash. Ashes with high concentrations (> 100 mg/kg) of trace elements are: lignite ash (V < La < Mn < Cr < Ni < Nd < Ba < Ce, Zn < Sr); refuse ash (Cr < Ce < V < Rb < Mn < Sr, Zn < Ba); biomass ash (Cu < Zn < Ba, Sr). Based on Earth crust normalization, Co, Ni, As, Se, Mo, Zn, Pb, U, and REEs (except Pr and Er) are enriched in the lignite ash; molybdenum, Zn, Cs, Pb, Th, U, La, Ce, and Lu in the refuse ash; and Mo, Zn, Sr, Cs, Pb, and Lu in the biomass ash. Elements As, Zn, Mo, Ni, Pb, Rb, Cr, V, Ba, Sr, and REEs are correlated with Al, indicating the possibilities of their association with aluminum silicates minerals. Similarly, barium, Cs, Th, and U are correlated with iron oxides; molybdenum and Sr may also be associated with sulfates and chlorides. Due to the alkaline nature of these ashes, the high concentrations of As and Se in the lignite ash; molybdenum in the biomass ash; and Se in the refuse ash may pose environmental concerns.  相似文献   

15.
煤中矿物/金属元素在生气过程中的催化作用   总被引:1,自引:0,他引:1  
传统煤化作用理论认为,煤层气生成是煤中有机质在地层温度/压力或微生物作用下发生降解或裂解的结果,近年来国内外相关研究成果却对这一传统理论提出了重大质疑。为此,从沉积有机质中具有催化作用的矿物/金属元素、催化模拟实验与其结果表征、催化作用机制3个方面,总结了国内外关于有机质催化生气作用研究的进展,讨论了本领域今后研究工作的重点和发展方向。认为在模拟煤中有机质的矿物/金属元素催化生气时,应考虑有机质和无机质之间的相互作用,兼顾矿物与矿物之间的反应,使之尽可能接近于真实的地层条件;以地质学和化学两大学科的理论为基础,借鉴化工界研究成果,在微观层面上深入研究煤中有机质—无机质作用的态—态催化作用、选键催化作用和微观反应机理。建议重视煤岩学、煤中矿物学、煤无机/有机地球化学与催化化学的综合研究,探究煤中矿物/金属元素催化生气的实质,寻找催化生气的判识标志,针对具体对象建立定量的催化反应速率数学模型和催化生气产率数学模型。  相似文献   

16.
Composition and quality of coals in the Huaibei Coalfield, Anhui, China   总被引:3,自引:0,他引:3  
The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust.  相似文献   

17.
Five commercially available in Estonia brands of bottled water have been analysed for 59 chemical elements by ICP-QMS and ICP-AES techniques to assess the quality of domestic mineral waters in scope of the European Groundwater Geochemistry Project initiated by the Geochemistry Expert Group of EuroGeoSurveys. Contents of 9 cations and anions, pH and electrical conductivity (EC) were measured in the bottled mineral waters by IC, titration and photometric methods. The data showed a significant difference between natural undiluted mineral water (Värska Originaal) characterised by the highest values of pH, EC and majority of trace elements studied, and other domestic waters sold in Estonia.  相似文献   

18.
利用电感耦合等离子原子发射光谱和电感耦合等离子质谱仪对准东煤田不同勘探区煤样中常量和微量元素含量进行测定,对准东煤田主要勘探区煤地球化学特征与中国和世界范围煤地球化学特征进行较系统对比.划分煤中微量元素组合特征,归纳各区内煤的常量与微量元素亲和性.较系统地揭示了准东煤田煤中微量元素丰度和赋存状态,对煤田大规模资源开发利用地球化学环境条件及煤中伴生元素工业利用提供参考.  相似文献   

19.
Trace elements associated with the combustion of coal have received more attention recently, as can be seen from the increasing demands laid down in legislation and permits.Knowledge of the trace element content of coal is essential. Coal used in the Netherlands is imported from all over the world. As a consequence, Dutch power stations are designed to burn a wide range of bituminous coals. The largest share nowadays originates from South Africa, Colombia, and Indonesia, with these three countries accounting for more than 85% of the coal fired in the Netherlands in recent years. The coals, as imported in the Netherlands, have been monitored for their (trace) element content. At present the database contains results of own analyses of about 170 coals, originating from 14 different countries. An important uncertainty was the question of how homogeneous the imported lots are. It appears that the lots as imported from overseas are fairly homogeneous.The behaviour and fate of trace elements in coal-fired power stations has been studied in more than 40 mass balance studies since 1977. More than 50 test series have been completed during co-combustion of biomass and waste materials (up to 40% on mass base) since 1993. It has therefore been possible to establish a relationship between (trace) elements in the fuel and the ash, as well as with emissions into the atmosphere.  相似文献   

20.
 The natural process of sulphate reduction takes place in the Rontok Pond. During the reduction the concentration of sulphate in the pond water decreases. The changes of δ34S in the pond water are typical for bacterial reduction. The reduction process in the Rontok Pond causes dissolution of barium and the radium from the pond sediments into the water. Concentrations of barium and 226Ra in the discharged water from the Silesia Coal Mine are lower than in water flowing out of the Rontok Pond into the Vistula River. The opposite trend is observed for iron and also Zn, Co, Ni, Mn, Al and Cu because of the precipitation of ferric hydroxide in the stream. The reduction process, which causes dissolution of barium and radium in water, can explain the release of these elements into the Vistula River. The dissolution of toxic elements can be reduced by the precipitation of non-toxic deposits on the sediment of Rontok Pond. Received: 3 July 1999 · Accepted: 27 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号