共查询到20条相似文献,搜索用时 15 毫秒
1.
Humood F. Al‐Mudhaf Mohammad N. Al‐Hayan Mustafa I. Selim Abdel‐Sattar I. Abu‐Shady 《洁净——土壤、空气、水》2011,39(12):1068-1080
Three hundred and twenty‐two samples of desalinated household water were collected from 99 sampling locations that covered 95% of Kuwaiti's residential areas. Seventy‐one brands of bottled water were collected from Kuwaiti markets. The water quality parameters that were studied included pH, electrical conductivity (EC), total dissolved solids (TDS), F?, Cl?, Br?, , , , , , , , and the major macronutrients Na+, K+, Ca2+, and Mg2+. The analysis yielded a large range of results for most of these parameters, with differences in some cases exceeding 10‐fold. With a few exceptions, the results were found to comply with US‐EPA and WHO standards. Only the water in two brands of bottled water was acidic (pH < 6.5). The TDS was found to be higher than the US‐EPA regulated value in 4 and 3% of the household samples and bottled water brands, respectively. The fluoride levels were generally higher in bottled water than in household water. However, the household water that was produced by the Doha desalination plant and some of the European brands of bottled water were the best samples studied in terms of their quantity of Ca2+, Mg2+, and Na+ compared with the DRI values for those substances. EC and TDS were positively correlated with , , Na+, K+, Ca2+, and Mg2+ for household water but only with Ca2+ and Mg2+ for bottled water. 相似文献
2.
Humood F. Al‐Mudhaf Mustafa I. Selim Aleksander M. Astel Abdel‐Sattar I. Abu‐Shady 《洁净——土壤、空气、水》2011,39(9):833-843
The present study reveals spatial variability of haloacetic acids and the basic physiochemical properties of drinking water samples through visualization based on the Kriging algorithm and hierarchical cluster analysis. Both projection and statistical method contributed to the logical classification of the indoor and outdoor water samples collected from various governorates covering more than 95% of the residential areas in Kuwait. Clustering of the variables led to the formation of several significant clusters corresponding to the effect of chlorine concentration and its residence time on the formation potential of chlorinated acetic acid derivatives in desalinated drinking water as well as to the total ionic composition of water samples and to the effect of the formation of brominated acetic acid derivatives. Clustering of samples, both indoor and outdoor, indicated that all of governorates located in the northern part of Kuwait are supplied with water containing high concentrations of chlorinated acetic acid derivatives, whereas significantly lower amounts of chlorinated or monobrominated acetic acids were found in water samples in the central and southern parts of the country. 相似文献
3.
Clarissa Glaser Marc Schwientek Tobias Junginger Benjamin Silas Gilfedder Sven Frei Martina Werneburg Christian Zwiener Christiane Zarfl 《水文研究》2020,34(24):4712-4726
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems. 相似文献
4.
ABSTRACTSomalia has frequently been affected by droughts, famines and water-related humanitarian crises. Water is scarce and the only perennial streams, the Juba and Shabelle rivers, are trans-boundary with river flows mainly originating from the Ethiopian highlands. In both riparian countries water demands are projected to increase. This paper reveals the impact of rising regional water abstractions on stream flows by illustrating sectoral demands and joining them into scenarios of medium and high population and economic growth. These scenarios are associated to the time horizons of 2035 and 2055, respectively. The scenarios disclose alarming trends especially for the Shabelle River: in the medium and high growth scenarios, water demands surpass the available river flows by 200 and 3500 hm3, respectively. The calculated deficits partly derive from conflicting assumptions about river flows by the two main riparian countries, an obstacle to any integrated planning efforts and sustained regional development.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR F. Hattermann 相似文献
5.
青海湖水量平衡分析与水资源优化配置研究 总被引:14,自引:4,他引:14
在充分收集有关资料的基础上研究青海湖1959-2000年间降水径流蒸发湖泊水位地下水补给量的动态变化建立水量平衡分析方程.青海湖水位在波动中持续下降42年来年平均水位累计下降了 3.32 m平均每年下降了0.079 m近年来下降的幅度减小. 同时青海湖储水量不断减少而湖区降水呈增加的趋势河川径流量地下水的入湖补给量 蒸发量呈现下降的趋势. 根据青海湖水平衡分析计算结果预测2010年青海湖流域耗水量将达1.27108m3为维护生态平衡和社会经济持续发展需要跨流域调水量引大济湖4.1108m3. 相似文献
6.
太湖流域水资源供需矛盾主要体现为"水质型缺水"问题,如何对"水质型缺水"进行定量描述,在太湖流域是一个难题.本文提出了"分质水资源量"的概念,以流域水资源四级分区为单元,以分区水质监测资料结合水资源量进行分析,分别统计分区分质水资源量.分析表明:太湖流域142×108 m3的地表水资源量中,Ⅲ类以上的适合于饮用水源和一般工业用水的优质水为35.8×108 m3,占25.2%;适合于电力冷却用水、农业灌溉的Ⅳ-Ⅴ类水为46.4×108 m3,占32.6%;不可利用的劣Ⅴ类水有59.9×108 m3,占42.2%.流域内优于Ⅴ类(含Ⅴ类)的地表水资源量为82.2×108 m3,占地表水总资源量的57.8%.而浅层地下水己基本被污染.需要指出,Ⅰ-Ⅲ类优质水虽仍有35.8×108 m3,但目前流域内对Ⅰ-Ⅲ类水的需求量己达60.6×108 m3,如将此两数对比,则优质水缺额为24.8×108 m3,但实际上,优质水的需求主要集中在流域中下游,而可供优质水水源则主要集中在流域上游地区山区水库和中游太湖湖心区、东部湖区和太浦河,供需两者的空间分布有较大出入,因此优质水资源缺额将更大,由此可见太湖流域水质型缺水形势十分严峻. 相似文献
7.
Abstract A monthly rainfall-runoff model was calibrated for a large tropical catchment in southern India. Various land-use and climatic change scenarios were tested to assess their effects on mean annual runoff and assured water yield at the Bhavanisagar Reservoir in Tamil Nadu, India. The largest increase in runoff (19%) came from converting forest and savanna (the indigenous control scenario) to agriculture. Mean annual runoff decreased by 35% after conversion to commercial forest and 6% after partial conversion to tea plantations. The predicted climate scenarios of reduced dry season rainfall decreased the annual runoff by 5% while enhanced annual rainfall caused a 17% increase in runoff. Even if land-use and climate changes had relatively large effects on runoff, the changes in reservoir yield which can be assured every year, were often less severe. This was probably due to the buffering effect of the reservoir and variation in the mean annual runoff. 相似文献
8.
Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis 总被引:3,自引:0,他引:3 下载免费PDF全文
Depeng Zuo Zongxue Xu Dingzhi Peng Jinxi Song Lei Cheng Shouke Wei Karim C. Abbaspour Hong Yang 《水文研究》2015,29(8):1942-1955
Due to rapid socioeconomic development, continuous population growth and urbanization, the world is facing a severe shortage of fresh water, particularly in arid and semi‐arid regions. A lack of water will put pressure on agricultural production, water pollution, as well as eco‐environmental degradation. Traditional water resources assessment mainly focused on blue water, ignoring green water. Therefore, analysis of spatiotemporal distribution of blue and green water resources in arid and semi‐arid regions is of great significance for water resources planning and management, especially for harmonizing agricultural water use and eco‐environmental water requirements. This study applied the Soil and Water Assessment Tool (SWAT) model and the Sequential Uncertainty Fitting algorithm (SUFI‐2) to calibrate and validate the SWAT model based on river discharges in the Wei River, the largest tributary of the Yellow River in China. Uncertainty analysis was also performed to quantify the blue and green water resources availability at different spatial scales. The results showed that most parts of the Wei River basin (WRB) experienced a decrease in blue water resources during the recent 50 years with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (the Guanzhong Plain), one of the most important grain production bases in China. Variations of green water flow and green water storage were relatively small both on spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources in arid and semi‐arid river basin. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
太湖流域水问题及对策探讨 总被引:1,自引:0,他引:1
系统回顾了太湖流域自古以来的治水历史和经验教训,详细介绍了新中国成立后太湖治理进展和取得成就,分析 了当前流域存在的主要水问题,指出流域仍存在防洪减灾能力偏低、水资源调控能力不足、水污染严重、水资源和水环境 承载能力偏低等问题.这些问题如不能得到及时解决,将成为今后流域经济社会可持续发展的严重制约因素.在此基础 上,提出了要加快构建流域防洪减灾体系、流域水资源调控体系、流域水生态环境保护体系、流域现代化管理和调度体系 等四大体系的对策,实现太湖流域水资源“引得进、蓄得住、排得出、可调控”的目标,以太湖流域水资源可持续利用支撑 和保障流域经济社会的可持续发展. 相似文献
10.
Fei Tian Yi He Lü Bo Jie Fu Lu Zhang Chuan fu Zang Yong Hui Yang Guo Yu Qiu 《水文研究》2017,31(7):1469-1478
Forest restoration policies are often implemented without the assessment of their full environmental impact. In this study, we investigated the challenges of vegetation greening resulted from forest restoration on water resource sustainability, using a model‐based simulation in northwestern China. Four different vegetation scenarios and 25 future climate scenarios were employed using the Soil and Water Assessment Tool model. Results suggest that (a) the mean annual evapotranspiration changes from only 7.2% in the barren case to 100% in the forest case; however, it produced a 35.2% reduction in average annual streamflow and a 157% increase in soil water storage. The upstream vegetation greening caused the enhancement of water retention, while also creating great challenges for future downstream water resource sustainability; (b) seasonal effect was significant in that 100% forest case increased evapotranspiration (+40%) but it also reduced the streamflow (?73%) compared to the barren case in growing season, which may exacerbate spring and summer drought; (c) changes of evapotranspiration and streamflow were only 0.3% and ?0.9% at T + 3.9 °C when compared to the historic scenario in barren cases, while for all forest cases, variations were 3% and ?21.8%, respectively; (d) vegetation greening induced more remarkable changes in hydrological components than those resulting from climate change. Our “what if” research provides new insights for promoting sustainable management of water resources and ecosystems in mountainous water source areas. 相似文献
11.
12.
13.
Djigbo Félicien Badou Bernd Diekkrüger Evison Kapangaziwiri Mamadou L. Mbaye Yacouba Yira Emmanuel A. Lawin Ganiyu T. Oyerinde Abel Afouda 《水文研究》2018,32(16):2526-2542
The aim of this study was to quantify climate change impact on future blue water (BW) and green water (GW) resources as well as the associated uncertainties for 4 subbasins of the Beninese part of the Niger River Basin. The outputs of 3 regional climate models (HIRHAM5, RCSM, and RCA4) under 2 emission scenarios (RCP4.5 and RCP8.5) were downscaled for the historical period (1976–2005) and for the future (2021–2050) using the Statistical DownScaling Model (SDSM). Comparison of climate variables between these 2 periods suggests that rainfall will increase (1.7% to 23.4%) for HIRHAM5 and RCSM under both RCPs but shows mixed trends (?8.5% to 17.3%) for RCA4. Mean temperature will also increase up to 0.48 °C for HIRHAM5 and RCSM but decrease for RCA4 up to ?0.37 °C. Driven by the downscaled climate data, future BW and GW were evaluated with hydrological models validated with streamflow and soil moisture, respectively. The results indicate that GW will increase in all the 4 investigated subbasins, whereas BW will only increase in one subbasin. The overall uncertainty associated with the evaluation of the future BW and GW was quantified through the computation of the interquartile range of the total number of model realizations (combinations of regional climate models and selected hydrological models) for each subbasin. The results show larger uncertainty for the quantification of BW than GW. To cope with the projected decrease in BW that could adversely impact the livelihoods and food security of the local population, recommendations for the development of adequate adaptation strategies are briefly discussed. 相似文献
14.
A. D. Koussis E. Georgopoulou A. Kotronarou K. Mazi P. Restrepo G. Destouni 《水文科学杂志》2013,58(7):1234-1245
Abstract We investigate the general methodology for an intensive development of coastal aquifers, described in a companion paper, through its application to the management of the Akrotiri aquifer, Cyprus. The Zakaki area of that aquifer, adjacent to Lemessos City, is managed such that it permits a fixed annual agricultural water demand to be met, as well as and a fraction of the water demand of Lemessos, which varies according to available surface water. Effluents of the Lemessos wastewater treatment plant are injected into the aquifer to counteract the seawater intrusion resulting from the increased pumping. The locations of pumping and injection wells are optimized based on least-cost, subject to meeting the demand. This strategy controls sea intrusion so effectively that desalting of only small volumes of slightly brackish groundwater is required over short times, while ~2.3 m3 of groundwater is produced for each 1 m3 of injected treated wastewater. The cost over the 20-year period 2000–2020 of operation is ~40 M€ and the unit production cost of potable water is under 0.2 €/m3. The comparison between the deterministic and stochastic analyses of the groundwater dynamics indicates the former as conservative, i.e. yielding higher groundwater salinity at the well. The Akrotiri case study shows that the proposed aquifer management scheme yields solutions that are preferable to the widely promoted seawater desalination, also considering the revenues from using the treated wastewater for irrigation. Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Ioannou, C., Georgiou, A., Schwartz, J. & Zacharias, I. (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J. 55(7), 1234–1245. 相似文献
15.
At the mean annual scale, water availability of a basin is substantially determined by how much precipitation will be partitioned into evapotranspiration and run-off. The Budyko framework provides a simple but efficient tool to estimate precipitation partitioning at the basin scale. As one form of the Budyko framework, Fu's equation has been widely used to model long-term basin-scale water balance. The major difficulty in applications of Fu's equation is determining how to estimate the curve shape parameter ω efficiently. Previous studies have suggested that the parameter ω is closely related to the long-term vegetation coverage on large river basins globally. However, on small basins, the parameter ω is difficult to estimate due to the diversity of controlling factors. Here, we focused on the estimation of ω for small basins in China. We identified the major factors controlling the basin-specific (calibrated) ω from nine catchment attributes based on a dataset from 206 small basins (≤50,000 km2) across China. Next, we related the calibrated ω to the major factors controlling ω using two statistical models, that is, the multiple linear regression (MLR) model and artificial neural network (ANN) model. We compared and validated the two statistical models using an independent dataset of 80 small basins. The results indicated that in addition to vegetation, other landscape factors (e.g., topography and human activity) need to be considered to capture the variability of ω on small basins better. Contrary to previous findings reached on large basins worldwide, the basin-specific ω and remote sensing-based vegetation greenness index exhibit a significant negative correlation. Compared with the default ω value of 2.6 used in the Budyko curve method, the two statistical models significantly improved the mean annual ET simulations on validation basins by reducing the root mean square error from 114 mm/year to 74.5 mm/year for the MLR model and 70 mm/year for the ANN model. In comparison, the ANN model can provide a better ω estimation than the MLR model. 相似文献
16.
17.
18.
Residential areas in Kuwait City have witnessed a dramatic rise in subsurface water tables over the last three decades. This water rise phenomenon is attributed mainly to over irrigation practices of private gardens along with leakage from domestic and sewage networks. This paper presents a comprehensive study for urban drainage in two selected areas representing the two hydrogeological settings encountered in Kuwait City. In the first area, a vertical drainage scheme was applied successfully over an area of 1 km2. The system has been under continuous operation and monitoring for more than 4 years without problems, providing a permanent solution for the water rise problem in this area. The hydrogeological system has approached steady state conditions and the water levels have dropped to about 3·5 m below the ground surface. In the second area a dual drainage scheme, composing of horizontal and vertical elements, is proposed. Horizontal elements are suggested in the areas where the deep groundwater contains hazardous gases that may pose environmental problems. The proposed drainage scheme in the second area has not yet been implemented. Field tests were conducted to assess the aquifer parameters in both areas and a numerical model has been developed to predict the long‐term response of the hydrogeological system in the two areas under consideration. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
19.
20.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment. 相似文献