首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zekai Şen 《水文研究》2008,22(3):356-365
There is a real need for more research on regionalization of flood estimation methods in arid zones. Such estimations are important because reliable long‐term storm rainfall and corresponding runoff measurements are commonly unavailable. This is the situation in many parts of the Kingdom of Saudi Arabia. Hence, it is necessary to develop a new approach, one that suits the conditions found in the Kingdom, which depend on available, but incomplete measurements and catchment morphological features. In this paper, a modified methodology based on the classical Snyder approach is proposed and it is referred to as the Saudi Geological Survey (SGS) approach in order to reflect works of this kind within the Survey. The basis of the methodology has two phases, namely, logical and empirical. The former phase is valid for any part of the world whether humid or arid, but the latter phase is location specific, which in the case of this paper, is the Arabian Peninsula. The application of the methodology is presented for Wadi Baysh, a major wadi in the south‐western part of the Kingdom. Furthermore, a synthetic unit hydrograph (UH) methodology based on a Gamma distribution function is also presented with applications to some of the Wadi Baysh sub‐basins. For this purpose, a dimensionless UH has been obtained, which is special for the area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

This paper investigates the relationship between expert judgement and numerical criteria when evaluating hydrological model performance by comparing simulated and observed hydrographs. Using a web-based survey, we collected the visual evaluations of 150 experts on a set of high- and low-flow hydrographs. We then compared these answers with results from 60 numerical criteria. Agreement between experts was found to be more frequent in absolute terms (when rating models) than in relative terms (when comparing models), and better for high flows than for low flows. When comparing the set of 150 expert judgements with numerical criteria, we found that most expert judgements were loosely correlated with a numerical criterion, and that the criterion that best reflects expert judgement varies from expert to expert. Overall, we identified two groups of 10 criteria yielding an equivalent match with the expertise of the 150 participants in low and high flows, respectively. A single criterion common to both groups (the Hydrograph Matching Algorithm with mean absolute error) may represent a good indicator for the overall evaluation of models based on hydrographs. We conclude that none of the numerical criteria examined here can fully replace expert judgement when rating hydrographs, and that both relative and absolute evaluations should be based on the judgement of multiple experts.
Editor D. Koutsoyiannis  相似文献   

3.
Snow and glacier melt are significant contributors to streamflow in Himalayan catchments, and their increasing contributions serve as key indicators of climate change. Consequently, the quantification of these streamflow components holds significant importance for effective water resource management. In this study, we utilized the spatio-temporal variability of isotopic signatures in stream water, rainfall, winter fresh snow, snowpack, glaciers, springs, and wells, in conjunction with hydrometeorological observations and Snow Cover Area (SCA) data, to identify water sources and develop a conceptual understanding of streamflow dynamics in three catchments (Lidder, Sindh, and Vishow) within the western Himalayas. The following results were obtained: (a) endmember contributions to the streamflow exhibit significant spatial and seasonal variability across the three catchments during 2018–2020; (b) snowmelt dominates streamflow, with average contributions across the entire catchment varying: 59% ± 9%, 55% ± 4%, 56% ± 6%, and 55% ± 9% in Lidder, 43% ± 6%, 38% ± 6%, 32% ± 4%, and 33% ± 5% in Sindh and 45% ± 8%, 40% ± 6%, 39% ± 6%, and 32% ± 5% in Vishow during spring, summer, autumn, and winter seasons, respectively; (c) glacier melt contributions can reach ~30% to streamflow near the source regions during peak summer; (d) The primary uncertainties in streamflow components are attributed to the spatiotemporal variability of tracer signatures of winter fresh snow/snowpack (±1.9% to ±20%); (e)regarding future streamflow components, if the glacier contribution were to disappear completely, the annual average streamflow in Lidder and Sindh could decrease up to ~20%. The depletion of the cryosphere in the region has led to a rapid increase in runoff (1980–1900), but it has also resulted in a significant streamflow reduction due to glacier mass loss and changes in peak streamflow over the past three decades (1990–2020). The findings highlight the significance of environmental isotope analysis, which provides insights into water resources and offers a critical indication of the streamflow response to glacier loss under a changing climate.  相似文献   

4.
The estimation of sub‐daily flows from daily flood flows is important for many hydrological and hydraulic applications. Flows during flood events often vary significantly within sub‐daily time‐scales, and failure to capture the sub‐daily flood characteristic can result in an underestimation of the instantaneous flood peaks, with possible risk of design failure. It is more common to find a longer record of daily flow series (observed or modelled using daily rainfall series) than sub‐daily flow data. This paper describes a novel approach, known as the steepness index unit volume flood hydrograph approach, for disaggregating daily flood flows into sub‐daily flows that takes advantage of the strong relationship between the standardized instantaneous flood peak and the standardized daily flood hydrograph rising‐limb steepness index. The strength of this relationship, which is considerably stronger than the relationship between the standardized flood peak and the event flood volume, is shown using data from six rivers flowing into the Gippsland Lakes in southeast Australia. The results indicate that the steepness index unit volume flood hydrograph approach can be used to disaggregate modelled daily flood flows satisfactorily, but its reliability is dependent on a model's ability to simulate the standardized daily flood hydrograph rising‐limb steepness index and the event flood volume. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

This study examines relationships between model parameters and urbanization variables for evaluating urbanization effects in a watershed. Rainfall–runoff simulation using the Nash model is the main basis of the study. Mean rainfall and excesses resulting from time-variant losses were completed using the kriging and nonlinear programming methods, respectively. Calibrated parameters of 47 events were related to urbanized variables, change of shape parameter responds more sensitively than that of scale parameter based on comparisons between annual average and optimal interval methods. Regression equations were used to obtain four continuous correlations for linking shape parameter with urbanization variables. Verification of 10 events demonstrates that shape parameter responds more strongly to imperviousness than to population, and a power relationship is suitable. Therefore, an imperviousness variable is a major reference for analysing urbanization changes to a watershed. This study found that time to peak of IUH was reduced from 11.76 to 3.97 h, whereas peak discharge increased from 44.79 to 74.92 m3/s.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Huang, S.-Y., Cheng, S.-J., Wen, J.-C. and Lee, J.-H., 2012. Identifying hydrograph parameters and their relationships to urbanization variables. Hydrological Sciences Journal, 57 (1), 144–161.  相似文献   

6.
A conceptual insytnataneous unit hydrograph (IUH) based on geomorphologival association of linear reservoirs (GR) previously developed by the authors has been compared with other IUH models: a distributed GR variation (GR(v)), the Nash IUH, the Chutha and Dooge IUH, and the Troutman and Karlinger IUH for the analysis of direct runoff hydrographs recorded in three experimental watershed of the north of Spain. The comparison was made through a calibration‐validation process in which a leave‐one‐out cross‐validation method was applied. The results indicate the satisfactory performance of all the models, with the advantage for the GR model of the dependence on only one parameter, which can be identified from the watershed and event characteristics. This property makes its use easier than that of other models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

This study presents a probabilistic framework to evaluate the impact of uncertainty of design rainfall depth and temporal pattern as well as antecedent moisture condition (AMC) on design hydrograph attributes – peak, time to peak, duration and volume, as well as falling and rising limb slopes – using an event-based hydrological model in the Swannanoa River watershed in North Carolina, USA. Of the six hydrograph attributes, falling limb slope is the most sensitive to the aforementioned uncertainties, while duration is the least sensitive. In general, the uncertainty of hydrograph attributes decreases in higher recurrence intervals. Our multivariate analysis revealed that in most of the return periods, AMC is the most important driver for peak, duration and volume, while time to peak and falling limb slope are most influenced by rainfall pattern. In higher return periods, the importance of rainfall depth and pattern increases, while the importance of AMC decreases.  相似文献   

8.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude,N, tends asymptotically, asN grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, , where is a mean link wave travel time.  相似文献   

10.
湖泊湿地水文过程研究进展   总被引:1,自引:0,他引:1  
湖泊湿地是世界上最重要的生态系统之一,在调蓄洪水、净化环境、保护生物多样性以及为人类提供淡水和食物等方面发挥着不可替代的作用.然而,受气候变化和人类活动叠加影响,湖泊湿地水文过程发生了剧烈变化,湖泊湿地面临着面积萎缩、质量下降和服务功能退化等风险.本文总结了原位观测、数值模拟和遥感技术在获取湖泊湿地关键水文要素方面的优...  相似文献   

11.
The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude,N, tends asymptotically, asN grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, , where is a mean link wave travel time.  相似文献   

12.
ROGER MOUSSA 《水文研究》1997,11(5):429-449
Recently, several attempts have been made to relate the hydrological response of a catchment to its morphological and topographical features using different hypotheses to model the effect of the drainage network. Several transfer functions were developed and some of these are based on the theory of a linear model, the geomorphological unit hydrograph. The aim of this paper is to present a methodology to automatically identify the transfer function, using digital elevation models for applications in distributed hydrological modelling. The transfer function proposed herein is based on the Hayami approximation solution of the diffusive wave equation especially adapted for the routing hydrograph through a channel network. The Gardon d’Anduze basin, southern France, was retained for applications. Digital elevation models were used to extract the channel network and divide the basin into subcatchments. Each subcatchment produces, at its own outlet, an impulse response which is routed to the outlet of the whole catchment using the diffusive wave model described by two parameters: celerity and diffusivity functions of geometrical characteristics of the channel network. Firstly, a geomorphological unit hydrograph obtained by routing a homogeneous effective rainfall was compared with the unit hydrograph identified by a lumped model scheme, then the distributed model was applied to take into account the spatial variability of effective rainfall in the catchment. Results show that this new method seems to be adapted for distributed hydrological modelling; it enables identification of a transfer function response for each hydrological unit, here subcatchments, and then simulation of the contribution of each unit to the hydrograph at the outlet. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
The Meixner functions are utilized to relate the effective rainfall, the direct runoff and the unit hydrograph through linkage equations. The linkage equations are then employed to derive the unit hydrograph for given rainfall-runoff data on a small agricultural watershed. These functions are tested with regard to their ability to reproduce and predict the direct runoff hydrograph. The Meixner functions are found to be an effective analytical tool for hydrograph synthesis. Further, they compare well with the least squares and linear programming methods of the unit hydrograph derivation.  相似文献   

14.
Abstract

This review paper critically examines one of the most popular flood hydrograph modelling techniques for ungauged basins, the synthetic unit hydrograph (SUH), and its recent developments and advances. For this purpose, the SUH models were first grouped into four main classes, as follows: (a) traditional or empirical models; (b) conceptual models; (c) probabilistic models; and (d) geomorphological models. It was found that the geomorphological class is the most useful and interesting, since it is able to employ topographic information, so limiting the role of the calibration parameters. This review is expected to be helpful to hydrologists, water managers and decision-makers searching for models to study the flood hydrograph, modelling techniques and related processes in ungauged basins. It was completed as the International Association of Hydrological Sciences (IAHS) Decade (2003–2012) on predictions in ungauged basins (PUB), drew to a close.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Singh, P.K., Mishra, S.K., and Jain, M.K., 2013. A review of the Synthetic Unit Hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59 (2), 239–261.  相似文献   

15.
Nonlinear transformation of unit hydrograph   总被引:1,自引:0,他引:1  
Bahram Saghafian   《Journal of Hydrology》2006,330(3-4):596-603
Unit hydrograph (UH) and its numerous derivatives have been popular for estimation of flood hydrographs. Two major assumptions still overshadow UH applications. One is the linearity and the other is time invariance. In theory, only peak discharge of an equilibrium hydrograph follows linear proportionality to excess rainfall intensity. In trying to relax the linearity constraint, this paper aims to propose a nonlinear way of transforming a given UH to other general hydrographs. The transformation or mapping technique relies on a simple rainfall ratio raised to a power less than unity. The case of nonlinear transformation is illustrated for a number of watershed geometries with either known kinematic wave analytic solutions or observed data. The nonlinear UH approach also relaxes the assumption of constant time base of the UH. The proposed nonlinear UH transformation may thus be viewed as a major step in closing the gap between physically based and traditional UH-based surface runoff simulation approaches.  相似文献   

16.
Recent decades have seen a change in the runoff characteristics of the Suntar River basin in the mountainous, permafrost, hard-to-reach region of Eastern Siberia. This study aims to investigate and simulate runoff formation processes, including the factors driving recent changes in hydrological response of the Suntar River, based on short-term historical observations of a range of hydrological, climatological and landscape measurements conducted in 1957–1959. The hydrograph model is applied as it has the advantage of using observed physical properties of landscapes as its parameters. The developed parametrization of the goltsy landscape (rocky-talus) is verified by comparison of the results of simulations of variable states of snow and frozen ground with observations carried out in 1957–1959. Continuous simulations of streamflow on a daily time step are conducted for the period 1957–2012 in the Suntar River (area 7680 km2, altitude 828–2794 m) with mean and median values of Nash–Sutcliff criteria reaching 0.58 and 0.67, respectively. The results of simulations have shown that the largest component of runoff (about 70%) is produced in the high-altitude area which comprises only 44% of the Suntar River basin area. The simulated streamflow reproduces the patterns of recently observed changes, including the increase in low flows, suggesting that the increase in the proportion of liquid precipitation in autumn due to air temperature rise is an important factor in driving streamflow changes in the region. The data presented are unique for the vast mountainous parts of North-Eastern Eurasia which play an important role in the global climate system. The results indicate that parameterizing a hydrological model based on observations allows the model to be used in studying the response of river basins to climate change with greater confidence.  相似文献   

17.
Flood hydrographs from ephemeral streams in arid areas provide valuable information for assessing run‐off and groundwater recharge. However, such data are often scarce or incomplete, especially in hyper‐arid regions. The hypothesis of this study was that it is possible to reconstruct a hydrograph of a specific point along an ephemeral stream with the knowledge of only the peak flow rate of a flood event at that point and that this can be done at almost every point along the stream. The feasibility of this approach lies in the shape of the recession stage of the flood hydrograph, which is known to be a repeating phenomenon. The recession stage comes immediately after the peak flow rate, when it begins its decline, and lasts until the flood is extinguished. A general shape of the flood recession stage can be provided. Because the recession stage represents ~80% of the duration of a flood event, it can provide a general idea of the flood hydrograph's shape. A simple model based on geometric progression is suggested to describe the repeating recession stage of a flood. The advantage of the proposed model is that it requires only one parameter: the recession characteristic at a fixed point along the ephemeral stream, termed recession coefficient q. By knowing the recession coefficient of a fixed point and the peak flow rate of a flood event at that point, one can plot the flood hydrograph. A good agreement is shown between the observed and computed values of the recession stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Knowledge about flood generating processes can be beneficial for numerous applications. Especially in the context of climate change impact assessment, daily patterns of meteorological and catchment state conditions leading to flood events (i.e., storylines) may be of value. Here, we propose an approach to identify storylines of flood generation using daily weather and snow cover observations. The approach is tested for and applied to a typical pre‐Alpine catchment in the period between 1961 and 2014. Five precipitation parameters were determined that describe temporal and spatial characteristics of the flood associated precipitation events. The catchment's snow coverage was derived using statistical relationships between a satellite‐derived snow cover climatology and station snow measurements. Moreover, (pre‐) event snow melt sums were estimated using a temperature‐index model. Based on the precipitation and catchment state parameters, 5 storylines were identified with a cluster analysis: These are (a) long duration, low intensity precipitation events with high precipitation depths, (b) long duration precipitation events with high precipitation depths and episodes of high intensities, (c) shorter duration events with high or (d) low precipitation intensity, respectively, and (e) rain‐on‐snow events. The event groups have distinct hydrological characteristics that can largely be explained by the storylines' respective properties. The long duration, high intensity storyline leads to the most adverse hydrological response, namely, a combination of high peak magnitudes, high volumes, and long durations of threshold exceedance. The results show that flood generating processes in mesoscale catchments can be distinguished on the basis of daily meteorological and catchment state parameters and that these process types can explain the hydrological flood properties in a qualitative way. Hydrological simulations of daily resolution can thus be analysed with respect to flood generating processes.  相似文献   

19.
In cockpit karst landscapes, fluxes from upland areas contribute large volumes of water to low-lying depressions and stream flow. Hydrograph hysteresis and similarity between monitoring sites is important for understanding the space–time variability of hydrologic responses across the “hillslope–depression–stream” continuum. In this study, the hysteretic feature of hydrographs was assessed by characterizing the loop-like relationships between responses at upstream sites relative to subsurface discharge at the outlet of a small karst catchment. A classification of hydrograph responses based on the multi-scale smoothing Kernel -derived distance classifies the hydrograph responses on the basis of similarities between hillslope and depression sites, and those at the catchment outlet. Results demonstrate that the temporal and spatial variability of hydrograph hysteresis and similarity between hillslope flow and outlet stream flow can be explained by the local heterogeneity of depression aquifer. Large depression storage deficits emerging in the highly heterogeneous aquifer produce strong hysteresis and multiple relationships of upstream hydrographs relative to the outlet subsurface discharge. In contrast, when depression storage deficits are filled during consecutive rainfall events, depression hydrographs at the high permeability sites are almost synchronous or exhibit a monotonous function with the hydrographs at the outlet. This reduced hydrograph hysteresis enhances preferential flow paths in fractured rocks and conduits that can accelerate the hillslope flow to the outlet. Therefore, classification of hydrograph similarities between any upstream sites and the catchment outlet can help to identify the dominant hydrological functions in the heterogeneous karst catchment.  相似文献   

20.
Performance of process‐based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi‐arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global‐satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote‐sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号