共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Kummu S. Tes S. Yin P. Adamson J. Józsa J. Koponen J. Richey J. Sarkkula 《水文研究》2014,28(4):1722-1733
The Tonle Sap Lake of Cambodia is the largest freshwater body of Southeast Asia, forming an important part of the Mekong River system. The lake has an extremely productive ecosystem and operates as a natural floodwater reservoir for the lower Mekong Basin, offering flood protection and assuring the dry season flow to the Mekong Delta. In light of the accelerating pace of water resources development within the Mekong Basin and the anticipation of potentially significant hydrological impacts, it is critical to understand the overall hydrologic regime of Tonle Sap Lake. We present here a detailed water balance model based on observed data of discharges from the lake's tributaries, discharge between Mekong and the lake through the Tonle Sap River, precipitation, and evaporation. The overland flow between the Mekong and lake was modelled with the EIA 3D hydrodynamic model. We found that majority (53.5%) of the water originates from the Mekong mainstream, but the lake's tributaries also play an important role contributing 34% of the annual flow, while 12.5% is derived from precipitation. The water level in the lake is mainly controlled by the water level in the Mekong mainstream. The Tonle Sap system is hence very vulnerable, from a water quantity point of view, to possible changes in the Mekong mainstream and thus, development activities in the whole Mekong basin. From a biogeochemical point of view, the possible changes in the lake's own catchment are equally important, together with the changes in the whole Mekong Basin. Based on our findings, we recommend of continuing the monitoring programmes in lake's tributaries and urgently starting of groundwater measurement campaign within the floodplain, and including the groundwater modelling to be part of the hydrodynamic models applied for the lake. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
3.
Nguyen Nghia Hung José Miguel Delgado Vo Khac Tri Le Manh Hung Bruno Merz András Bárdossy Heiko Apel 《水文研究》2012,26(5):674-686
The Mekong Delta is one of the largest and most intensively used estuaries in the world. Each year it witnesses widespread flooding which is both the basis of the livelihood for more than 17 million people but also the major hazard. Therefore, a thorough understanding of the hydrologic and hydraulic features is urgently required for various planning purposes. While the general causes and characteristics of the annual floods are understood, the inundation dynamics in the floodplains in Vietnam which are highly controlled by dikes and other control structures have not been investigated in depth. Especially, quantitative analyses are lacking, mainly due to scarce data about the inundation processes in the floodplains. Therefore, a comprehensive monitoring scheme for channel and floodplain inundation was established in a study area in the Plain of Reeds in the northeastern part of the Vietnamese Delta. This in situ data collection was complemented by a series of high‐resolution inundation maps derived from the TerraSAR‐X satellite for the flood seasons 2008 and 2009. Hence, the inundation dynamics in the channels and floodplains, and the interaction between channels and floodplains, could be quantified for the first time. The study identifies the strong human interference which is governed by flood protection levels, cropping patterns and communal water management. In addition, we examine the tidal influence on the inundation in various parts of the Delta, since it is expected that climate change‐induced sea level rise will increase the tidal contribution to floodplain inundation. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
湖泊变化是气候变化的指示器.为探索利用单一短时间尺度的卫星水位数据源估算长时间序列的湖泊水量变化的可行性,本文利用短时间尺度(2016—2018年) Sentinel-3A合成孔径雷达高度计(SRAL)作为唯一卫星水位数据源,以藏北高原内陆湖泊当惹雍错为例,结合基于Landsat光学遥感数据提取的1988—2018年的湖泊面积,综合分析2016—2018年间的非结冰期遥感湖泊面积与遥感湖泊水位变化,基于该时段范围的水位变化-面积变化关系和水量估算公式,估算1988—2018年湖泊水位水量变化与2001—2018年的年内变化,并结合GLDAS产品数据与雪线变化情况初步探讨湖泊变化的可能原因.结果表明:当惹雍错近30年湖泊面积扩张明显,湖泊水位、水量增加显著,相比1988年,2018年的湖泊面积、水位、水量分别增加21.1 km2、5.29 m、44.75亿m3.其中1988—1998年湖泊面积-水位-水量有所减少,2000—2018年间湖泊变化总体呈增加趋势.2001—2018年内湖泊面积、水位、水量变化呈现干湿季特征.1996—2014/2015年湖泊水量变化为38.3亿/35.5亿m3,水量变化趋势、变化量与以往对应时间段的研究结果具有较强的一致性.湖泊面积扩张主要发生在水下地形平缓的东南部和中西部区域.结合气候因素与雪线变化的分析表明,湖泊水量变化受降雨、气温影响复杂,长时间年际尺度上的湖泊水量增长与气温的一致性较降水量强,湖泊湿季受降水量与气温的影响都较大,其中2008—2018年的湿季降水量、气温与水量变化散点拟合的确定性系数R2分别为0.613、0.845.该研究表明Sentinel-3A合成孔径雷达数据在湖泊水量变化估算上的潜力,为利用单一且只具有短时段数据的卫星雷达数据估算长时间序列湖泊水量变化提供依据. 相似文献
5.
Two‐dimensional (2‐D) hydraulic models are currently at the forefront of research into river flood inundation prediction. Airborne scanning laser altimetry is an important new data source that can provide such models with spatially distributed floodplain topography together with vegetation heights for parameterization of model friction. The paper investigates how vegetation height data can be used to realize the currently unexploited potential of 2‐D flood models to specify a friction factor at each node of the finite element model mesh. The only vegetation attribute required in the estimation of floodplain node friction factors is vegetation height. Different sets of flow resistance equations are used to model channel sediment, short vegetation, and tall and intermediate vegetation. The scheme was tested in a modelling study of a flood event that occurred on the River Severn, UK, in October 1998. A synthetic aperture radar image acquired during the flood provided an observed flood extent against which to validate the predicted extent. The modelled flood extent using variable friction was found to agree with the observed extent almost everywhere within the model domain. The variable‐friction model has the considerable advantage that it makes unnecessary the unphysical fitting of floodplain and channel friction factors required in the traditional approach to model calibration. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
6.
7.
HE Yijun 《中国科学D辑(英文版)》2000,43(6):587-595
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface
current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture
radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface
winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the
ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of
ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting
ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on. 相似文献
8.
9.
Multi-temporal synthetic aperture radar (SAR) imagery from the European Remote Sensing Satellite (ERS-1) was evaluated for monitoring soil moisture at the Romney Marsh test site as part of the UK SAR Calibration and Crop Backscatter Experiment. A total of 18 C-band (5.3 GHz) ERS-1 SAR images were acquired during the three day orbit and co-registered. Accurate calibration of the backscatter measurements was achieved using calibration constants derived from an analysis of corner reflector target responses. Mean backscatter measurements were recorded for each field and compared with field data on soil moisture, surface roughness and rainfall patterns. A comparison of daily and hourly rainfall and soil moisture measurements with backscatter for different cover types showed that the observed trends in backscatter are dominated by moisture effects. A high positive correlation between volumetric soil moisture in the range 10–40% was observed for bare soil fields. A much weaker positive relationship between soil moisture and backscatter was observed for grassland fields. 相似文献
10.
近40年来长江下游干流洪水位变化及原因初探 总被引:3,自引:0,他引:3
最近十年来,江苏境内长江下游干流汛期最高潮位连续偏高,持续时间亦明显偏长。造成防汛工作紧张,引起政府有关部门的重视,水利部门将治理长江作为重点工作。本文利用长江下游干流大通水文站和以下各潮位站的实测水位流量资料对1998年和1954年的特大洪水水情进行了对比,分析了从六十年代到九十年代长江下游平均洪水量,平均最高水位和平均最高潮位,超过防洪警厌水位的平均天数等的变化规律。 相似文献
11.
SANDRINE DELMEIRE 《水文研究》1997,11(10):1393-1396
The aim of this study, undertaken by Geoimage, was the setting up of a fast and precise location method of flooded areas over two sites in southern France. The use of satellite imagery seemed to be the appropriate tool for this study. Two types of flood had to be distinguished: (i) an oceanic flood, of long duration characteristic, and of low intensity on the Rhône Valley, (ii) a torrential flood, of short duration characteristic, but of high intensity, on the Var Valley. As we distributed of ERS-1 images over both sites, during the floods, we could test our methodology. A multitemporal approach using ERS-1 images in PRI mode, acquired before, during and after the flood, was set up. In the case of oceanic flood, the radar images characteristic answers, enabled us to extract and identify areas under water at each date of acquisition of the images. Therefore, if we distribute images at each step of the flood, its evolution can be precisely reconstituted (in terms of time and surface). In the case of torrential flood, it is more difficult to localize the flood with precision. This can be explained by the change of water surface, which has a large swell in this case. Radars are sensitive to these changes in the turbidity, an interaction occurs and thus the results were ‘turned off’. Nevertheless, simulation studies from other satellite data make possible the location of more or less strong hydrological risk accident areas. © 1997 John Wiley & Sons, Ltd. 相似文献
12.
Floodplain stratigraphy is used as a new method for reconstructing ice jam flood histories of northern rivers. The method, based on reconstruction of the sedimentary record of vertically‐accreting floodplains, relies on stratigraphic logging and interpretation of floodplain sediments, which result from successive ice jam floods, and radiocarbon dating of inter‐flood organic material for chronology. In a case study along a reach of the Yukon River that straddles the Yukon–Alaska border, the method is used to develop a record of ice jam flooding for the last 2000 years. Detailed chronostratigraphic logs from three sites along the Yukon River indicates that the long‐term recurrence interval varies depending on location, but ranges from approximately once in 25 years to once in 38 years (or a probability of ca 3–4% in any given year). This is broadly similar to the 4·5% probability of recurrence calculated from archival and gauged data at Dawson City, Yukon Territory, for the period 1898–2006. Two of the three study locations, with sufficient chronology, suggest a decrease in flood frequency in the last several hundred years relative to the preceding period at each site, broadly corresponding to the Little Ice Age, suggesting climate exerts some control over long‐term ice jam flood frequency. This study demonstrates that the floodplain sedimentary record offers the potential to extend records of ice jam flooding in remote, ungauged northern rivers and provides a broader temporal context for assessing the frequency and variability of ice jam flooding. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
Emmanuel Roux Joecila Santos da Silva Augusto Cesar Vieira Getirana Marie-Paule Bonnet Stéphane Calmant Jean-Michel Martinez 《水文科学杂志》2013,58(1):104-120
Abstract Satellite radar altimetry is complementary to in situ limnimetric surveys as a means of estimating the water height of large rivers, lakes and flood plains. Production of water height time series by satellite radar altimetry technology requires first the selection of radar ground target locations corresponding to water body surfaces under study, i.e. the definition of “virtual limnimetric stations”. We propose to investigate qualitative and quantitative differences between three representative virtual station creation methodologies: (a) a fully manual method, (b) a semi-automatic method based on a land cover characterization that allows the water body surface under study to be located; and (c) an original fully automatic procedure that exploits a digital elevation model and an estimation of the river width. The results yielded by these three methods are comparable: maximum absolute magnitudes of water height differences being 0.46, 0.26 and 0.15 m for, respectively, 95, 90 and 80% of the water height values obtained. Moreover, more than 67% and 92% of time series jointly produced by the methods present root mean square differences lower than 20 and 50 cm, respectively. The results show that the fully automatic method developed herein provides as reliable results as the fully manual one. This opens the way to use of satellite radar altimetry for the generation of water height time series on a large scale, and considerably extends the applicability of satellite radar altimetry in hydrology. Citation Roux, E., Santos da Silva, J., Vieira Getirana, A. C., Bonnet, M.-P., Calmant, S., Martinez, J.-M. & Seyler, F. (2010) Producing time series of river water height by means of satellite radar altimetry—comparative study. Hydrol. Sci. J. 55(1), 104–120. 相似文献
14.
Sand rivers are ephemeral watercourses containing sand that are occasionally flooded with rainwater runoff during the rainy season. Although the riverbed appears dry for most of the year, there is perennial groundwater flow within the sand. This water flowing beneath the surface is a valuable resource for local communities; nonetheless our understanding of such river systems is limited. Hence, this paper aims to improve our understanding of the hydrology of sand rivers and to examine the potential use of remote sensing to detect the presence of water in the sand. The relationship between rainfall events and changes in the water level of two sand rivers in the Matabeleland South Province of Zimbabwe was investigated. A lagged relationship was observed for the Manzamnyama River but for the Shashani River the relationship was seen only when considering cumulative rainfall events. The comparison of the modelled flow as simulated by a water balance model with observations revealed the important influence of the effective sediment depth on the recharge and recession of the alluvial channels in addition to the length of the channel. The possibility of detecting water in the alluvial sands was investigated using remote sensing. During the wet season, optical images showed that the presence of water on the riverbed was associated with a smooth signal, as it tends to reflect the incident radiation. A chronological analysis of radar images for different months of the year demonstrates that it is possible to detect the presence of water in the sand rivers. These results are a first step towards the development of a methodology that would aim to use remote sensing to help reducing survey costs by guiding exploratory activities to areas showing signs of water abstraction potential. 相似文献
15.
Airborne scanning laser altimetry (LiDAR) is an important new data source that can provide two‐dimensional river flood models with spatially distributed floodplain topography for model bathymetry, together with vegetation heights for parameterization of model friction. Methods are described for improving such models by decomposing the model's finite‐element mesh to reflect floodplain vegetation features such as hedges and trees having different frictional properties to their surroundings, and significant floodplain topographic features having high height curvatures. The decomposition is achieved using an image segmentation system that converts the LiDAR height image into separate images of surface topography and vegetation height at each point. The vegetation height map is used to estimate a friction factor at each mesh node. The spatially distributed friction model has the advantage that it is physically based, and removes the need for a model calibration exercise in which free parameters specifying friction in the channel and floodplain are adjusted to achieve best fit between modelled and observed flood extents. The scheme was tested in a modelling study of a flood that occurred on the River Severn, UK, in 1998. A satellite synthetic aperture radar image of flood extent was used to validate the model predictions. The simulated hydraulics using the decomposed mesh gave a better representation of the observed flood extent than the more simplistic but computationally efficient approach of sampling topography and vegetation friction factors on to larger floodplain elements in an undecomposed mesh, as well as the traditional approach using no LiDAR‐derived data but simply using a constant floodplain friction factor. Use of the decomposed mesh also allowed velocity variations to be predicted in the neighbourhood of vegetation features such as hedges. These variations could be of use in predicting localized erosion and deposition patterns that might result in the event of a flood. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
Hahn Chul Jung James Hamski Michael Durand Doug Alsdorf Faisal Hossain Hyongki Lee A. K. M. Azad Hossain Khaled Hasan Abu Saleh Khan A.K.M. Zeaul Hoque 《地球表面变化过程与地形》2010,35(3):294-304
The Surface Water and Ocean Topography (SWOT) satellite mission will provide global, space‐based estimates of water elevation, its temporal change, and its spatial slope in fluvial environments, as well as across lakes, reservoirs, wetlands, and floodplains. This paper illustrates the utility of existing remote sensing measurements of water temporal changes and spatial slope to characterize two complex fluvial environments. First, repeat‐pass interferometric SAR measurements from the Japanese Earth Resources Satellite are used to compare and contrast floodplain processes in the Amazon and Congo River basins. Measurements of temporal water level changes over the two areas reveal clearly different hydraulic processes at work. The Amazon is highly interconnected by floodplain channels, resulting in complex flow patterns. In contrast, the Congo does not show similar floodplain channels and the flow patterns are not well defined and have diffuse boundaries. During inundation, the Amazon floodplain often shows sharp hydraulic changes across floodplain channels. The Congo, however, does not show similar sharp changes during either infilling or evacuation. Second, Shuttle Radar Topography Mission measurements of water elevation are used to derive water slope over the braided Brahmaputra river system. In combination with in situ bathymetry measurements, water elevation and slope allow one to calculate discharge estimates within 2.3% accuracy. These two studies illustrate the utility of satellite‐based measurements of water elevation for characterizing complex fluvial environments, and highlight the potential of SWOT measurements for fluvial hydrology. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
18.
Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model 总被引:1,自引:0,他引:1
下载免费PDF全文

X. Sun L. Bernard‐Jannin C. Garneau M. Volk J. G. Arnold R. Srinivasan S. Sauvage J. M. Sánchez‐Pérez 《水文研究》2016,30(2):187-202
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computation time. The soil and water assessment tool (SWAT) model is a semi‐distributed model that has been successfully applied around the world. However, it has not been able to simulate the two‐way exchanges between surface water and groundwater. In this study, the SWAT‐landscape unit (LU) model – based on a catena method that routes flow across three LUs (the divide, the hillslope and the valley) – was modified and applied in the floodplain of the Garonne River. The modified model was called SWAT‐LUD. Darcy's equation was applied to simulate groundwater flow. The algorithm for surface water‐level simulation during flooding periods was modified, and the influence of flooding on groundwater levels was added to the model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The simulated water exchange quantity from SWAT‐LUD was compared with the output of a two‐dimensional distributed model, surface–subsurface water exchange model. The results showed that simulated groundwater levels in the LU adjoining the river matched the observed data very well. Additionally, SWAT‐LUD model was able to reflect the actual water exchange between the river and the aquifer. It showed that river water discharge has a significant influence on the surface–groundwater exchanges. The main water flow direction in the river/groundwater interface was from groundwater to river; water that flowed in this direction accounted for 65% of the total exchanged water volume. The water mixing occurs mainly during high hydraulic periods. Flooded water was important for the surface–subsurface water exchange process; it accounted for 69% of total water that flowed from the river to the aquifer. The new module also provides the option of simulating pollution transfer occurring at the river/groundwater interface at the catchment scale. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.