首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of runoff contributing areas would provide the ideal focal points for water quality monitoring and Best Management Practice (BMP) implementation. The objective of this study was to use a field‐scale approach to delineate critical runoff source areas and to determine the runoff mechanisms in a pasture hillslope of the Ozark Highlands in the USA. Three adjacent hillslope plots located at the Savoy Experimental Watershed, north‐west Arkansas, were bermed to isolate runoff. Each plot was equipped with paired subsurface saturation and surface runoff sensors, shallow groundwater wells, H‐flumes and rain gauges to quantify runoff mechanisms and rainfall characteristics at continuous 5‐minute intervals. The spatial extent of runoff source areas was determined by incorporating sensor data into a geographic information‐based system and performing geostatistical computations (inverse distance weighting method). Results indicate that both infiltration excess runoff and saturation excess runoff mechanisms occur to varying extents (0–58% for infiltration excess and 0–26% for saturation excess) across the plots. Rainfall events that occurred 1–5 January 2005 are used to illustrate the spatial and temporal dynamics of the critical runoff source areas. The methodology presented can serve as a framework upon which critical runoff source areas can be identified and managed for water quality protection in other watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
《水文科学杂志》2012,57(1):112-126
ABSTRACT

The Rational Formula (RF) is probably the most frequently applied equation in practical hydrology to compute the peak discharge, due to its simplicity and effective compromise between theory and data availability. Thus, after more than a century, the estimation of peak discharge through the RF is still an important and challenging issue in hydrology. The RF assumes response linearity and sometimes assumes that the return period does not depend on the runoff coefficient and neglects the time to ponding and the antecedent moisture condition. Moreover, the RF requires the critical duration of rainfall and the runoff coefficient to be estimated, both of which are highly controversial. This paper proposes an advanced RF that makes it possible to derive the peak discharge at the hillslope scale, where the above RF assumptions are mostly relaxed. Physically based runoff coefficient tables, which are not affected by subjectivity, are presented and application of the derived procedure is performed.  相似文献   

3.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In practice, rainfall–runoff relationships are achieved through a simply defined runoff coefficient concept that is widely used in many engineering hydrological designs in urban and rural areas. The simplicity of the method, with the sole requirement of runoff coefficient assessment, is the main attractiveness, in addition to its successful prediction of average runoff rates for a given rainfall record. Unfortunately, in the classical regression approach of the rainfall–runoff relationship, internal variabilities are not taken into consideration explicitly. The runoff coefficient is considered a constant value, and it is used without distinction of antecedent conditions for the calculation of runoff from the rainfall record. In this paper, various other uncertainty embedded versions of the runoff coefficient, and hence rainfall–runoff formulation, are presented in terms of statistics, probability, perturbation and, finally, fuzzy system modelling. It is concluded that the fuzzy logic approach yields the least relative error among the various alternative runoff calculation methods; therefore, it is recommended for use in future studies. The application of various alternatives is presented for two monthly rainfall‐runoff records around Istanbul, Turkey. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The problem of obtaining field‐scale surface response to rainfall events is complicated by the spatial variability of infiltration characteristics of the soil and rainfall. In this paper, we develop and test a simplified model for generating surface runoff over fields with spatial variation in both rainfall rate and saturated hydraulic conductivities. The model is able to represent the effects of local variation in infiltration, as well as the run‐on effect that controls infiltration of excess water from saturated upstream areas. The effective rainfall excess is routed to the slope outlet using a simplified solution of the kinematic wave approximation. Model results are compared to averaged hydrographs from numerically‐intensive Monte–Carlo simulations for observed and design rainfall events and soil patterns that are typical of Central Italy. The simplified model is found to yield satisfactory results at a relatively small computational expense. A proposal to include a simple channel routing scheme is also presented as a prelude to extend this conceptualization to watershed scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Frequent human activities and climate change in the karst region of southwest China since the 1950s have led to the investigation of response of runoff to climate and catchment properties. Runoff coefficient (Rc) as an expression variable of the catchment response to rainfall is important to describe runoff dynamics and to estimate available streamflow for utilization. In this study, the equations of Rc associated with its attributors of climate condition and catchment property were derived using the Budyko framework. The equations were used to estimate relationship between the Rc and the attributors in the karst catchments in Guizhou province of southwest China. Analysis in the selected 23 karst catchments demonstrates that the spatial distribution of Rc is dominated by the catchment properties, such as the catchment properties of geology, slope and land use and land cover, rather than climate condition of drought index. Correlation analysis indicates that the catchment with a large slope usually has a high value of Rc, and a large proportion of carbonate rock in a catchment reduces Rc in the study area. Temporal increasing trend of Rc during 1961–2000 was found for most catchments in the study area. This increasing trend was primarily resulted from changes of catchment properties, e.g. deforestation in large areas of Guizhou province during the 1950s–1980s. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Temporally weighted average curve number method for daily runoff simulation   总被引:1,自引:0,他引:1  
Nam Won Kim  Jeongwoo Lee 《水文研究》2008,22(25):4936-4948
The modified Soil Conservation Service curve number (CN) method is widely used in long‐term continuous models to predict daily surface runoff. However, it has been shown that this method gives poor results in reproducing peak flows in high rainfall periods. This is because there is an inaccuracy stemming from the model algorithm as it adjusts the daily runoff curve number as a function of soil moisture content at the end of the previous day. This paper proposes an alternative daily based curve number technique that can provide better prediction of daily runoff during the high flow season. The proposed method uses the temporally weighted average curve number (TWA‐CN) to estimate daily surface runoff, while considering the effect of rainfall during a given day as well as the antecedent soil moisture condition. To test the applicability of the TWA‐CN method, it was incorporated with the long‐term, continuous simulation watershed models SWAT and SWAT‐G. Simulations were conducted for the Miho River watershed located in the middle of South Korea. The graphical displays and statistics of the determination coefficient (R2) and the Nash–Sutcliffe model efficiency (NSE) of the observed and simulated daily runoff indicated that the modified SWAT with the TWA‐CN method may provide better runoff prediction (R2 = 0·837, NSE = 0·833) than the original SWAT (R2 = 0·815, NSE = 0·824). Likewise, the determination coefficient (R2 = 0·816) and the Nash–Sutcliffe efficiency (NSE = 0·834) for the modified SWAT‐G are also higher than the original version (R2 = 0·782, NSE = 0·825). It is expected that the improved capability in predicting surface runoff using the suggested CN estimate method will provide a sound contribution to the accurate simulations of water yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Measurement of surface water runoff from plots of two different sizes   总被引:1,自引:0,他引:1  
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The saturated hydraulic conductivity, Ks, is a soil property that has a key role in the partitioning of rainfall into surface runoff and infiltration. The commonly used instruments and methods for in situ measurements of Ks have frequently provided conflicting results. Comparison of Ks estimates obtained by three classical devices—namely, the double ring infiltrometer (DRI), the Guelph version of the constant‐head well permeameter (GUELPH‐CHP) and the CSIRO version of the tension permeameter (CSIRO‐TP) is presented. A distinguishing feature in this study is the use of steady deep flow rates, obtained from controlled rainfall–runoff experiments, as benchmark values of Ks at local and field‐plot scales, thereby enabling an assessment of these methods in reliably reproducing repeatable values and in their capability of determining plot‐scale variation of Ks. We find that the DRI grossly overestimates Ks, the GUELPH‐CHP gives conflicting estimates of Ks with substantial overestimation in laboratory experiments and underestimation at the plot scale, whereas the CSIRO‐TP yields average Ks values with significant errors of 24% in the plot scale experiment and 66% in laboratory experiments. Although the DRI would likely yield a better estimate of the nature of variability than the GUELPH‐CHP and CSIRO‐TP, a separate calibration may be warranted to correct for the overestimation of Ks values. The reasons for such discrepancies within and between the measurement methods are not yet fully understood and serve as motivation for future work to better characterize the uncertainty associated with individual measurements of Ks using these methods and the characterization of field scale variability from multiple local measurements.  相似文献   

12.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

13.
Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water‐table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October–March) and summer (April–September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21–24% of annual rainfall, with more evaporation taking place during summer than winter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
David Dunkerley 《水文研究》2012,26(15):2211-2224
Small plots and a dripper rainfall simulator were used to explore the significance of the intensity fluctuations (‘event profile’) within simulated rainfall events on infiltration and runoff from bare, crusted dryland soils. Rainfall was applied at mean rain rates of 10 mm/h. Fourteen simulated rainfall events each involved more than 5000 changes of intensity and included multipeak events with a 25‐mm/h peak of intensity early in the event or late in the event and an event that included a temporary cessation of rain. These are all event profiles commonly seen in natural rain but rarely addressed in rainfall simulation. A rectangular event profile of constant intensity, as commonly used in rainfall simulation experiments, was also adopted for comparative purposes. Results demonstrate that event profile exerts an important effect on infiltration and runoff for these soils and rainfall event profiles. ‘Uniform’ events of unvarying intensity yielded the lowest total runoff, the lowest peak runoff rate and the lowest runoff ratio (0.13). These parameters increased for ‘early peak’ profiles (runoff ratio 0.24) and reached maxima for ‘late peak’ profiles (runoff ratio 0.50). Differences in runoff ratio and peak runoff rate between the ‘uniform’ event profile and those of varying intensity were all statistically significant at p ≤ 0.01. Compared with ‘uniform’ runs, the varying intensity runs yielded larger runoff ratios and peak runoff rates, exceeding those of the ‘uniform’ events by 85%–570%. These results suggest that for small‐plot studies of infiltration and erosion, the continued use of constant rainfall intensity simulations may be sacrificing important information and misrepresenting the mechanisms involved in runoff generation. The implications of these findings for the ecohydrology of the research site, an area of contour‐aligned banded vegetation in which runoff and runon are of critical importance, are highlighted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
J. M. Mugo  T. C. Sharma 《水文研究》1999,13(17):2931-2939
This paper highlights the use of a conceptual method for separating runoff components in daily hydrographs, contrary to the traditionally used graphical method of separation. In the conceptual method, the components, viz. surface flow, interflow and baseflow, are regarded as high, medium and low frequency signals and their separation is done using the principle of a recursive digital filter commonly used in signal analysis and processing. It requires estimates of the direct runoff (βd) and surface runoff (βs) filter parameters which are obtained by a least‐squares procedure involving baseflow and interflow indices based on graphical and recursive digital filter estimation techniques. The method thus circumvents the subjective element associated with the graphical procedure of hydrograph separation, in which case the eye approximation and/or one's skill at plotting is the prime basis for the whole analysis. The analysis based on three forest catchments in Kimakia, Kenya, East Africa, revealed that βd=Kb and βs=Ki , where Kb and Ki are the baseflow and interflow recession constants. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Muddy floods due to agricultural runoff are a widespread and frequent phenomenon in the European loess belt, and particularly in central Belgium. These floods are triggered when high quantities of runoff are generated on cropland and cause severe erosion. Three soil surface characteristics are relevant to determine the runoff potential of cultivated soils: soil cover by crops and residues, soil surface crusting and roughness. These characteristics have been observed on 65 cultivated fields throughout 2005. A heavy rainfall event representative for events triggering muddy floods in the region (60 mm h?1 during 30 minutes) has been simulated using a 0·5 m2 simulator on fields with the 17 most observed combinations of soil surface characteristics in central Belgium. Runoff is not observed in the case of (ploughed) bare uncrusted soils, nor in the case of soils covered by crops showing a transitional crust and a moderate roughness (1–2 cm). In the cases where runoff has been observed, mean runoff coefficients ranged from 13% (wheat in July) to 58% (sugar beet or maize in May and June). Grassed buffer strips (GBSs) and grassed waterways (GWWs) show a higher runoff coefficient (62% for GBSs and 73% for GWWs) than most cultivated soils (13–58%). Furthermore, it is demonstrated that small plot measurements can be used to estimate runoff generation at the field scale. A classification of runoff generation risk based on the surveys of soil surface characteristics has been applied to common crops of central Belgium. February as well as the period between May and September are the most critical for runoff at the field scale. However, it appears from monitoring of a 16 ha catchment that the highest runoff volumes and peak discharges are recorded between May and August after heavy rainfall, explaining why 85% of muddy floods are recorded during this period in central Belgium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Infiltration excess overland flow has been identified as the dominant flow pathway in recently reclaimed surface mined watersheds as a result of compaction and sorting during the reclamation procedure. Therefore, there could be a fairly direct relationship between runoff generated from the hillslopes to that measured at the watershed outlet. A 3‐year study was initiated in 1993 to determine how well surface runoff at a watershed scale could be predicted from 1‐m2 runoff frames placed on hillslopes in two reclaimed surface‐mined watersheds in central Alberta. Runoff from the hillslope frames suggests outlet discharge should be high from the 3\4‐ha Sandy Subsoil Watershed and much less for the 9\8‐ha West Watershed, but the opposite occurred. Most of the hillslope runoff from the Sandy Subsoil Watershed infiltrated once it reached the channel and depression storage played an insignificant role in determining runoff. In contrast, most of the runoff from the West Watershed originated from rain falling directly on the saturated channel (depression storage) or near‐channel saturated areas, rather than the hillslopes. Neither watershed runoff magnitude nor timing could be predicted from the same parameters for hillslope runoff frames for either reclaimed watershed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
We developed a difference infiltrometer to measure time series of non‐steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5‐m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long‐term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin‐scale runoff responses. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号