首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
《国际泥沙研究》2016,(3):212-219
In this paper, the site-specific impact of climate change on sediment yield has been assessed for the Naran watershed, Pakistan. Observed data has been gathered for period 1961–2010 and HaDCM3 GCM predictors of SRES scenarios A2 and B2 have been downloaded. Future precipitation and temperature time series have been statistically downscaled for time horizon 2011–2040 and 2041–2070. Downscaled data show both increasing and decreasing changes with respect to the observation. Potential sediment yield for future related to climate change has been simulated. The results show that the both snowy and monsoon seasonal stream discharges are expected to increase. This will lead to increase in annual sus-pended sediment yields. Percentage-wise, a less discharge and more sediment yield are expected during the early summer. The study concluded that the climate change and variability are influencing the watershed, and suspended sediment yield is likely to increase in the future.  相似文献   

4.
Land use and land cover (LULC) changes strongly affect local hydrology and sediment yields.The current study focused on a basin in the Brazilian Amazon and had the following three objectives:(1) to perform an effective diagnosis of flow and sediment yield,(2) to evaluate the impacts of LULC changes over the last 40 years on the hydro-sedimentological variables,and (3) to investigate the impacts of the possible trends or breaking points in the flow,surface runoff,and sediment yield series.The Soi...  相似文献   

5.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

6.
Climate changes brought on by increasing greenhouse gases in the atmosphere are expected to have a significant effect on the Pacific Northwest hydrology during the 21st century. Many climate model simulations project higher mean annual temperatures and temporal redistribution of precipitation. This is of particular concern for highly urbanized basins where runoff changes are more vulnerable to changes in climate. The Rock Creek basin, located in the Portland metropolitan area, has been experiencing rapid urban growth throughout the last 30 years, making it an ideal study area for assessing the effect of climate and land cover changes on runoff. A combination of climate change and land cover change scenarios for 2040 with the semi‐distributed AVSWAT (ArcView Soil and Water Assessment Tool) hydrological model was used to determine changes in mean runoff depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, seasonal, and annual scales. Statistically downscaled climate change simulation results from the ECHAM5 general circulation model (GCM) found that the region would experience an increase of 1·2 °C in the average annual temperature and a 2% increase in average annual precipitation from the baseline period. AVSWAT simulation shows a 2·7% increase in mean annual runoff but a 1·6% decrease in summer runoff. Projected climate change plus low‐density, sprawled urban development for 2040 produced the greatest change to mean annual runoff depth (+5·5%), while climate change plus higher‐density urban development for 2040 resulted in the smallest change (+5·2%), when compared with the climate and land cover of the baseline period. This has significant implications for water resource managers attempting to implement adaptive water resource policies to future changes resulting from climate and urbanization. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
《国际泥沙研究》2020,35(1):69-78
Bed sediment carbon to nitrogen(C/N) ratio is one of the essential variables reflecting sources of organic matter in river basins.In order to explore the spatial variability in sources of sediment C/N ratios,and the influence of land use and land cover(LULC) changes on the Betwa River basin in Peninsular India,51 river bed sediment samples were collected in December 2016.The coefficient of variation(CV) was35%indicating highly variable biogeochemical parameters.The sediment C/N ratio varied from 2.94 to 10.09.3.21-56.40,and 6.50-76.97 in upstream,mid-stream,and downstream regions,respectively,indicating a progressive change in sources of organic matter and depositional environment.The positive correlation between total carbon(TC) and C/N ratio was increasing in the downstream direction [upstream(+0.560) mid-stream(+0.603) downstream(+0.838)],which is an indication of high deposition and slow decomposition of sedimentary terrigenous organic matter distant from the regions of urban pollution.The LULC change analysis done by remote sensing and Geographic Information System(GIS)methods revealed an adverse change for the forests and barren land and a positive change for the agricultural land and built-up areas.The sediment C/N ratio mapping showed the impact of LULC changes on the sediment quality.The spatial distribution of bed sediment C/N ratio in the Betwa River basin has important reference value for managing organic matter transport in the downstream Yamuna River and Ganga River basin.  相似文献   

8.
This paper investigates the potential impacts of climate change on water resources in northern Tuscany, Italy. A continuous hydrological model for each of the seven river basins within the study area was calibrated using historical data. The models were then driven by downscaled and bias‐corrected climate projections of an ensemble of 13 regional climate models (RCMs), under two different scenarios of representative concentration pathway (RCP4.5 and RCP8.5). The impacts were examined at medium term (2031–2040) and long term (2051–2060) in comparison with a reference period (2003–2012); the changes in rainfall, streamflow, and groundwater recharge were investigated. A high degree of uncertainty characterized the results with a significant intermodel variability, the period being equal. For the sake of brevity, only the results for the Serchio River basin were presented in detail. According to the RCM ensemble mean and the RCP4.5, a moderate decrease in rainfall, with reference to 2003–2012, is expected at medium term (?0.6%) and long term (?2.8%). Due to the warming of the study area, the reduction in the streamflow volume is two times the precipitation decrease (?1.1% and ?6.8% at medium and long term, respectively). The groundwater recharge is mainly affected by the changes in climate with expected percolation volume variations of ?3.3% at 2031–2040 and ?8.1% at 2051–2060. The impacts on the Serchio River basin water resources are less significant under the RCP8.5 scenario. The presence of artificial structures, such as dam‐reservoir systems, can contribute to mitigate the effects of climate change on water resources through the implementation of appropriate regulation strategies.  相似文献   

9.
Abstract

A semi-distributed hydrological model and reservoir optimization algorithm are used to evaluate the potential impacts of climate change on existing and proposed reservoirs in the Sonora River Basin, Mexico. Inter-annual climatic variability, a bimodal precipitation regime and climate change uncertainties present challenges to water resource management in the region. Hydrological assessments are conducted for three meteorological products during a historical period and a future climate change scenario. Historical (1990–2000) and future (2031–2040) projections were derived from a mesoscale model forced with boundary conditions from a general circulation model under a high emissions scenario. The results reveal significantly higher precipitation, reservoir inflows, elevations and releases in the future relative to historical simulations. Furthermore, hydrological seasonality might be altered with a shift toward earlier water supply during the North American monsoon. The proposed infrastructure would have a limited ability to ameliorate future conditions, with more benefits in a tributary with lower flood hazard. These projections of the impacts of climate change and its interaction with infrastructure should be of interest to water resources managers in arid and semi-arid regions.
Editor D. Koutsoyiannis  相似文献   

10.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

11.
Climate change characterized by increasing temperature is able to affect precipitation regime and thus surface hydrology.However,the manner in which river sediment loads respond to climate change is not well understood,and related assessment regarding the effect of climate change on sediment loads is lacking.We present a quantitative estimate of changes in sediment loads(from 1.5 Gt yr-1 pre-1990 to 0.6 Gt yr-1 from 1991-2007) in response to climate change in eight large Chinese rivers.Over the past decades,precipitation change coupled with rising temperatures has played a significant role in influencing the sediment delivery dynamics,although human activities, such as reservoir construction,water diversion,sand mining and land cover change,are still the predominant forces. Lower precipitation coupled with rising temperatures has significantly reduced sediment loads delivered into the sea in semi-arid climates(4-61%).In contrast,increasingly warmer and wetter climates in subtropical zones has yielded more sediment(0.4-11%),although the increase was offset by human impact.Our results indicate that,compared with mechanical retention by reservoirs,water reduction caused by climate change or human withdrawals has contributed more sediment reduction for the rivers with abundant sediment supply but limited transport capacity(e.g.,the Huanghe).Furthermore,our results indicate that every 1%change in precipitation has resulted in a 1.3%change in water discharge and a 2%change in sediment loads.In addition,every 1%change in water discharge caused by precipitation has led to a 1.6%change in sediment loads,but the same percentage of water discharge change caused largely by humans would only result in a 0.9%change in sediment loads.These figures can be used as a guideline for evaluating the responses of sediment loads to climate change in similar climate zones because future global warming will cause dramatic changes in water and sediment in river basins worldwide at rates previously unseen.  相似文献   

12.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Insufficiently calibrated forest parameters of the Soil & Water Assessment Tool (SWAT) may introduce uncertainties to water resource projections in forested watersheds. In this study, we improved SWAT forest parameterization and phosphorus cycling representations to better simulate forest ecosystems in the St. Croix River basin, and we further examined how those improvements affected model projections of streamflow, sediment, and nitrogen export under future climate conditions. Simulations with improved forest parameters substantially reduced model estimates of water, sediment, and nitrogen fluxes relative to those based on default parameters. Differences between improved and default projections can be attributed to the enhanced representation of forest water consumption, nutrient uptake, and protection of soil from erosion. Better representation of forest ecosystems in SWAT contributes to constraining uncertainties in water resource projections. Results of this study highlight the importance of improving SWAT forest ecosystem representations in projecting delivery of water, sediment, and nutrients from land to rivers in response to climate change, particularly for watersheds with large areas of forests. Improved forest parameters and the phosphorus weathering algorithms developed in this study are expected to help enhance future applications of SWAT to investigate hydrological and biogeochemical consequences of climate change.  相似文献   

14.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

15.
Identification of factors controlling sediment dynamics under natural flow regimes can establish a baseline for quantifying effects of present day hydrological alteration and future climate change on sediment delivery and associated flooding. The process-based INCA-Sediment model was used to simulate Ganga River sediment transport under baseline conditions and to quantify possible future changes using three contrasting climate scenarios. Construction of barrages and canals has significantly altered natural flow regimes, with profound consequences for sediment transport. Projected increases in future monsoonal precipitation will lead to higher peak flows, increasing flood frequency and greater water availability. Increased groundwater recharge during monsoon periods and greater rates of evaporation due to increased temperature complicate projections of water availability in non-monsoon periods. Rainfall and land surface interaction in high-relief areas drive uncertainties in Upper Ganga sediment loads. However, higher monsoonal peak flows will increase erosion and sediment delivery in western and lower reaches.  相似文献   

16.
Changes in climate may significantly affect how sediment moves through watersheds into harbours and channels that are dredged for navigation or flood control. Here, we applied a hydrologic model driven by a large suite of climate change scenarios to simulate both historical and future sediment yield and transport in two large, adjacent watersheds in the Great Lakes region. Using historical dredging expenditure data from the U.S. Army Corps of Engineers, we then developed a pair of statistical models that link sediment discharge from each river to dredging costs at the watershed outlet. Although both watersheds show similar slight decreases in streamflow and sediment yield in the near‐term, by Mid‐Century, they diverge substantially. Dredging costs are projected to change in opposite directions for the two watersheds; we estimate that future dredging costs will decline in the St. Joseph River by 8–16% by Mid‐Century but increase by 1–6% in the Maumee River. Our results show that the impacts of climate change on sediment yield and dredging may vary significantly by watershed even within a region and that agricultural practices will play a large role in determining future streamflow and sediment loads. We also show that there are large variations in responses across climate projections that cause significant uncertainty in sediment and dredging projections.  相似文献   

17.
The aim of this study was to quantify climate change impact on future blue water (BW) and green water (GW) resources as well as the associated uncertainties for 4 subbasins of the Beninese part of the Niger River Basin. The outputs of 3 regional climate models (HIRHAM5, RCSM, and RCA4) under 2 emission scenarios (RCP4.5 and RCP8.5) were downscaled for the historical period (1976–2005) and for the future (2021–2050) using the Statistical DownScaling Model (SDSM). Comparison of climate variables between these 2 periods suggests that rainfall will increase (1.7% to 23.4%) for HIRHAM5 and RCSM under both RCPs but shows mixed trends (?8.5% to 17.3%) for RCA4. Mean temperature will also increase up to 0.48 °C for HIRHAM5 and RCSM but decrease for RCA4 up to ?0.37 °C. Driven by the downscaled climate data, future BW and GW were evaluated with hydrological models validated with streamflow and soil moisture, respectively. The results indicate that GW will increase in all the 4 investigated subbasins, whereas BW will only increase in one subbasin. The overall uncertainty associated with the evaluation of the future BW and GW was quantified through the computation of the interquartile range of the total number of model realizations (combinations of regional climate models and selected hydrological models) for each subbasin. The results show larger uncertainty for the quantification of BW than GW. To cope with the projected decrease in BW that could adversely impact the livelihoods and food security of the local population, recommendations for the development of adequate adaptation strategies are briefly discussed.  相似文献   

18.
Water resources in semi-arid regions like the Mediterranean Basin are highly vulnerable because of the high variability of weather systems. Additionally, climate change is altering the timing and pattern of water availability in a region where growing populations are placing extra demands on water supplies. Importantly, how reservoirs and dams have an influence on the amount of water resources available is poorly quantified. Therefore, we examine the impact of reservoirs on water resources together with the impact of climate change in a semi-arid Mediterranean catchment. We simulated the Susurluk basin (23.779-km2) using the Soil and Water Assessment Tool (SWAT) model. We generate results for with (RSV) and without reservoirs (WRSV) scenarios. We run simulations for current and future conditions using dynamically downscaled outputs of the MPI-ESM-MR general circulation model under two greenhouse gas relative concentration pathways (RCPs) in order to reveal the coupled effect of reservoir and climate impacts. Water resources were then converted to their usages – blue water (water in aquifers and rivers), green water storage (water in the soil) and green water flow (water losses by evaporation and transpiration). The results demonstrate that all water resources except green water flow are projected to decrease under all RCPs compared to the reference period, both long-term and at seasonal scales. However, while water scarcity is expected in the future, reservoir storage is shown to be adequate to overcome this problem. Nevertheless, reservoirs reduce the availability of water, particularly in soil moisture stores, which increases the potential for drought by reducing streamflow. Furthermore, reservoirs cause water losses through evaporation from their open surfaces. We conclude that pressures to protect society from economic damage by building reservoirs have a strong impact on the fluxes of watersheds. This is additional to the effect of climate change on water resources.  相似文献   

19.
Numerous studies related to the simulation and prediction of urban growth to address land-use and land-cover (LULC) changes have been conducted in recent years, but very few have considered the impact of climate change, flooding impact, government relocation, corridor cities, and long-term rainfall variations simultaneously. To bridge the gap, this study predicts possible future LULC changes for 2030 and 2050 in Beijing (China), since Beijing is one of the fastest-growing megacities in the world. The proposed integrated modeling analysis covers four key scenarios to reflect the influences of different factors and constraints on LULC changes, in which cellular automata, Markov chain, and multi-criteria evaluation are fully coupled. While fuzzy membership function was used to address the uncertainty associated with the decision analysis, Markov chain, which is regarded as a stochastic process, was applied to predict future urban growth pathways. In addition, a statistical downscaling model driven by possible climate change scenarios was employed to address long-term rainfall variations in Beijing, China. This study differs from previous ones for Beijing in terms of not only the effects of climate change and flooding impact but also the newly-developed economic free trade zone in Xiong’an and the central government’s plan to relocate to the Tongzhou district. Findings indicate that there is no marked difference in LULC over the four key scenarios. Compared to the baseline LULC in 2010, the predicted results indicate that urban expansion is expected to increase more than 6 and 11% in 2030 and 2050, respectively.  相似文献   

20.
土地利用方式及其转移对区域氮素迁移和水体氮负荷产生重要影响,但量化自然发展、耕地保护和生态保护等多情景下土地利用方式氮排放时空变化特征,揭示流域水体氮负荷对土地利用变化的响应机制仍面临挑战。本研究以巢湖流域为研究区,通过遥感解译多时相土地利用类型数据,借助PLUS和InVEST模型探索不同情景下氮排放对各土地利用类型变化的响应机制。结果表明:(1)2000—2020年期间,巢湖流域建设用地面积的增加(626.14 km2)主要占据的是耕地(减少了775.64 km2),城市化建设成为土地利用方式变化的主要驱动力;(2)PLUS模型多情景预测结果显示:2020—2030年间土地利用变化特征与2000—2020年基本保持一致,但各用地间的转换频率降低;(3)经InVEST模拟,耕地面积缩减而导致氮排放的减少量(340.17 t)大于建设用地等面积增加带来的氮排放增加量(170.11 t),使2000—2020年间巢湖流域土地利用所排放的总氮量呈降低趋势,由2000年的4768.04 t降至2020年的4597.98 t;(4)不同情景下,2030年各土地利用方式的氮排放量较2020年均呈降低趋势。其中,生态保护情景既有效地保障了巢湖流域生态功能又展现出较好的氮减排效果(113.36 t);鉴于此,建议流域管理部门应通过合理规划各用地类型的发展,严格控制建设用地对林草地、水域等生态用地的侵占,以期削减流域水体氮负荷、缓解氮素治理压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号