首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This paper proposes a new orientation to address the problem of hydrological model calibration in ungauged basin. Satellite radar altimetric observations of river water level at basin outlet are used to calibrate the model, as a surrogate of streamflow data. To shift the calibration objective, the hydrological model is coupled with a hydraulic model describing the relation between streamflow and water stage. The methodology is illustrated by a case study in the Upper Mississippi Basin using TOPEX/Poseidon (T/P) satellite data. The generalized likelihood uncertainty estimation (GLUE) is employed for model calibration and uncertainty analysis. We found that even without any streamflow information for regulating model behavior, the calibrated hydrological model can make fairly reasonable streamflow estimation. In order to illustrate the degree of additional uncertainty associated with shifting calibration objective and identifying its sources, the posterior distributions of hydrological parameters derived from calibration based on T/P data, streamflow data and T/P data with fixed hydraulic parameters are compared. The results show that the main source is the model parameter uncertainty. And the contribution of remote sensing data uncertainty is minor. Furthermore, the influence of removing high error satellite observations on streamflow estimation is also examined. Under the precondition of sufficient temporal coverage of calibration data, such data screening can eliminate some unrealistic parameter sets from the behavioral group. The study contributes to improve streamflow estimation in ungauged basin and evaluate the value of remote sensing in hydrological modeling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we analyse the uncertainty and parameter sensitivity of a conceptual water quality model, based on a travel time distribution (TTD) approach, simulating electrical conductivity (EC) in the Duck River, Northwest Tasmania, Australia for a 2-year period. Dynamic TTDs of stream water were estimated using the StorAge Selection (SAS) approach, which was coupled with two alternate methods to model stream water EC: (1) a solute-balance approach and (2) a water age-based approach. Uncertainty analysis using the Differential Evaluation Adoptive Metropolis (DREAM) algorithm showed that: 1. parameter uncertainty was a small contribution to the overall uncertainty; 2. most uncertainty was related to input data uncertainty and model structure; 3. slightly lower total error was obtained in the water age-based model than the solute-balance model; 4. using time-variant SAS functions reduced the model uncertainty markedly, which likely reflects the effect of dynamic hydrological conditions over the year affecting the relative importance of different flow pathways over time. Model parameter sensitivity analysis using the Variogram Analysis of Response Surfaces (VARS-TOOL) framework found that parameters directly related to the EC concentration were most sensitive. In the solute-balance model, the rainfall concentration Crain and in the age-based model, the parameter controlling the rate of change of EC with age (λ) were the most sensitive parameter. Model parameters controlling the age mixes of both evapotranspiration and streamflow water fluxes (i.e., the SAS function parameters) were influential for the solute-balance model. Little change in parameter sensitivity over time was found for the age-based concentration relationship; however, the parameter sensitivity was quite dynamic over time for the solute-balance approach. The overarching outcomes provide water quality modellers, engineers and managers greater insight into catchment functioning and its dependence on hydrological conditions.  相似文献   

4.
Understanding hydrological processes at catchment scale through the use of hydrological model parameters is essential for enhancing water resource management. Given the difficulty of using lump parameters to calibrate distributed catchment hydrological models in spatially heterogeneous catchments, a multiple calibration technique was adopted to enhance model calibration in this study. Different calibration techniques were used to calibrate the Soil and Water Assessment Tool (SWAT) model at different locations along the Logone river channel. These were: single-site calibration (SSC); sequential calibration (SC); and simultaneous multi-site calibration (SMSC). Results indicate that it is possible to reveal differences in hydrological behavior between the upstream and downstream parts of the catchment using different parameter values. Using all calibration techniques, model performance indicators were mostly above the minimum threshold of 0.60 and 0.65 for Nash Sutcliff Efficiency (NSE) and coefficient of determination (R 2) respectively, at both daily and monthly time-steps. Model uncertainty analysis showed that more than 60% of observed streamflow values were bracketed within the 95% prediction uncertainty (95PPU) band after calibration and validation. Furthermore, results indicated that the SC technique out-performed the other two methods (SSC and SMSC). It was also observed that although the SMSC technique uses streamflow data from all gauging stations during calibration and validation, thereby taking into account the catchment spatial variability, the choice of each calibration method will depend on the application and spatial scale of implementation of the modelling results in the catchment.  相似文献   

5.
C. Dobler  F. Pappenberger 《水文研究》2013,27(26):3922-3940
The increasing complexity of hydrological models results in a large number of parameters to be estimated. In order to better understand how these complex models work, efficient screening methods are required in order to identify the most important parameters. This is of particular importance for models that are used within an operational real‐time forecasting chain such as HQsim. The objectives of this investigation are to (i) identify the most sensitive parameters of the complex HQsim model applied in the Alpine Lech catchment and (ii) compare model parameter sensitivity rankings attained from three global sensitivity analysis techniques. The techniques presented are the (i) regional sensitivity analysis, (ii) Morris analysis and (iii) state‐dependent parameter modelling. The results indicate that parameters affecting snow melt as well as processes in the unsaturated soil zone reveal high significance in the analysed catchment. The snow melt parameters show clear temporal patterns in the sensitivity whereas most of the parameters affecting processes in the unsaturated soil zone do not vary in importance across the year. Overall, the maximum degree day factor (meltfunc_max) has been identified to play a key role within the HQsim model. Although the parameter sensitivity rankings are equivalent between methods for a number of parameters, for several key parameters differing results were obtained. An uncertainty analysis demonstrates that a parameter ranking attained from only one method is subjected to large uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Several recent studies have shown the significance of representing groundwater in land surface hydrologic simulations. However, optimal methods for model parameter calibration in order to realistically simulate baseflow and groundwater depth have received little attention. Most studies still use globally constant groundwater parameters due to the lack of available datasets for calibration. Moreover, when models are calibrated, various parameter combinations are found to exhibit equifinality in simulated total runoff due to model parameter interactions. In this study, a simple lumped groundwater model is incorporated into the Community Land Model (CLM), in which the water table is interactively coupled to soil moisture through the groundwater recharge fluxes. The coupled model (CLMGW) is successfully validated in Illinois using a 22-year (1984–2005) monthly observational dataset. Baseflow estimates from the digital recursive filter technique are used to calibrate the CLMGW parameters. The advantage obtained from incorporating baseflow calibration in addition to traditional calibration based on measured streamflow alone is demonstrated by a Monte Carlo-type simulation analysis. Using the optimal parameter sets identified from baseflow calibration, flow partitioning and water table depth simulations using CLMGW are improved, and the equifinality problem is alleviated. For other regions that lack observations of water table depth, the baseflow calibration approach can be used to enhance parameter estimation and constrain water table depth simulations.  相似文献   

7.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

8.
Problem complexity for watershed model calibration is heavily dependent on the number of parameters that can be identified during model calibration. This study investigates the use of global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems while maximizing the information extracted from hydrological response data. This study shows that by expanding calibration problem formulations beyond traditional, statistical error metrics to also include metrics that capture indices or signatures of hydrological function, it is possible to reduce the complexity of calibration while maintaining high quality model predictions. The sensitivity-guided calibration is demonstrated using the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual rainfall–runoff model of moderate complexity (i.e., up to 14 freely varying parameters). Using both statistical and hydrological metrics, optimization results demonstrate that parameters controlling at least 20% of the model output variance (through individual effects and interactions) should be included in the calibration process. This threshold generally yields 30–40% reductions in the number of SAC-SMA parameters requiring calibration – setting the others to a priori values – while maintaining high quality predictions. Two parameters are recommended to be calibrated in all cases (percent impervious area and lower zone tension water storage), three parameters are needed in drier watersheds (additional impervious area, riparian zone vegetation, and percent of percolation going to tension storage), and the lower zone parameters are crucial unless the watershed is very dry. Overall, this study demonstrates that a coupled, multi-objective sensitivity and calibration analysis better captures differences between watersheds during model calibration and serves to maximize the value of available watershed response time series. These contributions are particularly important given the ongoing development of more complex integrated models, which will require new tools to address the growing discrepancy between the information content of hydrological data and the number of model parameters that have to be estimated.  相似文献   

9.
10.
Using hydro-meteorological time series of 50 years and in situ measurements, the dominant runoff processes in perennial Andean headwater catchments in Chile were determined using the hydrological model HBV light. First, cluster analysis was used to identify dry, wet and intermediate years. From these, sub-periods were identified with contrasting seasonal climatic influences on streamflow. By calibrating the model across different periods, impacts on model performance, parameter sensitivity and identifiability were investigated, providing insights into differences in hydrological processes. The modelling approach suggested that, independently of a dry or wet period of calibration, the streamflow response is mostly consistent with flux from groundwater storage, while only a small fraction comes from direct routing of snowmelt. The variation of model parameters, such as the groundwater rate coefficient, was found to be consistent with differing recharge in wet and dry years. The resulting snowmelt–groundwater model is a realistic hypothesis of the hydrological operation of such complex, data scarce and semi-arid Andean catchments. This model may also be a useful tool for predictions of seasonal water availability and a basis for further field studies.  相似文献   

11.
Abstract

The capability of the Surface inFiltration Baseflow (SFB) conceptual rainfall-runoff model to simulate streamflow for three catchments selected from northern Iraq is investigated. These catchments differ in their climatic regimes and physical characteristics. Three versions of the model were tested: the original three-parameter model (SFB), the modified five-parameter model (SFB-5), and the modified six-parameter model (SFB-6). The available daily precipitation, potential evapotranspiration and runoff data were used in conjunction with a simulated annealing (SA) optimization technique to calibrate the various versions of the SFB model. A simple sensitivity analysis was then carried out to determine the relative importance of the model parameters. The study indicated that use of the original three parameter model was not adequate to simulate monthly streamflow in the selected catchments. The modified version (SFB-5) provided better runoff simulation than the original SFB model; overall a 19% increase was observed in the coefficient of determination (R2) between simulated and observed monthly runoff. The SFB-5 model performed with varying degrees of success among the catchments. The model performance in the validation stage was reasonable and comparable to that of the calibration stage. The sensitivity analysis of the SFB model for arid catchments revealed that the baseflow parameter (B) was the most sensitive one, while the S and F parameters were less sensitive than the B parameter.  相似文献   

12.
Hydrologic models are simplified representations of natural hydrologic systems. Since these models rely on assumptions and simplifications to capture some aspects of hydrological processes, calibration of parameters is unavoidable. However, utilizing the philosophy of a recent modelling framework proposed by Bahremand (2016), we show how calibration of most model parameters can be avoided by allocating or presetting these parameters utilizing knowledge gained from sensitivity analyses, field observations and a priori specifications as a part of a parameter allocation procedure. This paper details the simulation of daily river flow of the Shemshak-Roudak watershed performed using the Python version of the WetSpa model. The WetSpa-Python model is a distributed model of hydrological processes applied at the watershed scale. The model was applied to the Shemshak-Roudak watershed of Iran with parameter allocation. Model calibration involved only two parameters. Straightforward methods were proposed for allocating model parameters, including three baseflow-related parameters and the determination of maximum active groundwater storage using a mass curve technique. Also, the Budyko curve was used to constrain a correction factor for potential evapotranspiration. The WetSpa-Python model was extended to include the influence of snowmelt. A failure to include snow in the hydrological processes of the WetSpa-Python model creates a significant discrepancy between the observed and simulated hydrographs during the spring. The results of daily simulations for 12 years (2002–2014) are in good agreement with observations of discharge (Kling-Gupta Efficiency = 0.84). These results demonstrate that it is feasible to simulate hydrographs with limited calibration given a knowledge of hydrological processes and an understanding of relationships between catchment characteristics and model parameters.  相似文献   

13.
ABSTRACT

In this study, a hybrid factorial stepwise-cluster analysis (HFSA) method is developed for modelling hydrological processes. The HFSA method employs a cluster tree to represent the complex nonlinear relationship between inputs (predictors) and outputs (predictands) in hydrological processes. A real case of streamflow simulation for the Kaidu River basin is applied to demonstrate the efficiency of the HFSA method. After training a total of 24?108 calibration samples, the cluster tree for daily streamflow is generated based on a stepwise-cluster analysis (SCA) approach and is then used to reproduce the daily streamflows for calibration (1995–2005) and validation (2008–2010) periods. The Nash-Sutcliffe coefficients for calibration and validation are 0.68 and 0.65, respectively, and the deviations of volume are 1.68% and 4.11%, respectively. Results show that: (i) the HFSA method can formulate a SCA-based hydrological modelling system for streamflow simulation with a satisfactory fitting; (ii) the variability and peak value of streamflow in the Kaidu River basin can be effectively captured by the SCA-based hydrological modelling system; (iii) results from 26 factorial experiments indicate that not only are minimum temperature and precipitation key drivers of system performance, but also the interaction between precipitation and minimum temperature significantly impacts on the streamflow. The findings are useful in indicating that the streamflow of the study basin is a mixture of snowmelt and rainfall water.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR G. Thirel  相似文献   

14.
Performance of process‐based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi‐arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global‐satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote‐sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
With the recent development of distributed hydrological models, the use of multi‐site observed data to evaluate model performance is becoming more common. Distributed hydrological model have many advantages, and at the same time, it also faces the challenge to calibrate over‐do parameters. As a typical distributed hydrological model, problems also exist in Soil and Water Assessment Tool (SWAT) parameter calibration. In the paper, four different uncertainty approaches – Particle Swarm Optimization (PSO) techniques, Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting algorithm (SUFI‐2) and Parameter Solution (PARASOL) – are taken to a comparative study with the SWAT model applied in Peace River Basin, central Florida. In our study, the observed river discharge data used in SWAT model calibration were collected from the three gauging stations at the main tributary of the Peace River. Behind these approaches, there is a shared philosophy; all methods seek out many parameter set to fit the uncertainties due to the non‐uniqueness in model parameter evaluation. On the basis of the statistical results of four uncertainty methods, difficulty level of each method, the number of runs and theoretical basis, the reasons that affected the accuracy of simulation were analysed and compared. Furthermore, for the four uncertainty method with SWAT model in the study area, the pairwise correlation between parameters and the distributions of model fit summary statistics computed from the sampling over the behavioural parameter and the entire model calibration parameter feasible spaces were identified and examined. It provided additional insight into the relative identifiability of the four uncertainty methods Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

17.
ABSTRACT

Reliable simulations of hydrological models require that model parameters are precisely identified. In constraining model parameters to small ranges, high parameter identifiability is achieved. In this study, it is investigated how precisely model parameters can be constrained in relation to a set of contrasting performance criteria. For this, model simulations with identical parameter samplings are carried out with a hydrological model (SWAT) applied to three contrasting catchments in Germany (lowland, mid-range mountains, alpine regions). Ten performance criteria including statistical metrics and signature measures are calculated for each model simulation. Based on the parameter identifiability that is computed separately for each performance criterion, model parameters are constrained to smaller ranges individually for each catchment. An iterative repetition of model simulations with successively constrained parameter ranges leads to more precise parameter identifiability and improves model performance. Based on these results, a more consistent handling of model parameters is achieved for model calibration.  相似文献   

18.
Parameter calibration and sensitivity analysis (SA) are usually not straightforward tasks for distributed hydrological models, owing to the complexity of models and the large number of parameters. A two-step SA approach is proposed for analysing hydrological signatures based on the distributed hydrology–soil–vegetation model (DHSVM) in the Jinhua River Basin, East China. A preliminary SA is conducted to obtain influential parameters via analysis of variance. These parameters are further analysed through a variance-based global sensitivity analysis method to achieve robust rankings and parameter contributions. Parallel computing is designed to reduce the computational burden. The results reveal that only a few parameters are significantly sensitive and that interactions between parameters cannot be ignored. When analysing hydrological signatures, it is found that water yield is simulated very well for most samples. Small and medium floods are simulated very well, while slight underestimations happen for large floods.  相似文献   

19.
ABSTRACT

Traditionally, hydrological models are only calibrated to reproduce streamflow regime without considering other hydrological state variables, such as soil moisture and evapotranspiration. Limited studies have been performed on constraining the model parameters, despite the fact that the presence of a large number of parameters may provide large degree of freedom, resulting in equifinality and poor model performance. In this study, a multi-objective optimization approach is adopted, and both streamflow and soil moisture data are calibrated simultaneously for an experimental study basin in the Saskatchewan Prairies in western Canada. The results of this study show that the multi-objective calibration improves model fidelity compared to the single objective calibration. Moreover, the study demonstrates that single objective calibration performed against only streamflow can fairly mimic the streamflow hydrograph but does not yield realistic estimation of other fluxes such as evapotranspiration and soil moisture (especially in deeper soil layers).  相似文献   

20.
Parameter uncertainty in hydrologic modeling is crucial to the flood simulation and forecasting. The Bayesian approach allows one to estimate parameters according to prior expert knowledge as well as observational data about model parameter values. This study assesses the performance of two popular uncertainty analysis (UA) techniques, i.e., generalized likelihood uncertainty estimation (GLUE) and Bayesian method implemented with the Markov chain Monte Carlo sampling algorithm, in evaluating model parameter uncertainty in flood simulations. These two methods were applied to the semi-distributed Topographic hydrologic model (TOPMODEL) that includes five parameters. A case study was carried out for a small humid catchment in the southeastern China. The performance assessment of the GLUE and Bayesian methods were conducted with advanced tools suited for probabilistic simulations of continuous variables such as streamflow. Graphical tools and scalar metrics were used to test several attributes of the simulation quality of selected flood events: deterministic accuracy and the accuracy of 95 % prediction probability uncertainty band (95PPU). Sensitivity analysis was conducted to identify sensitive parameters that largely affect the model output results. Subsequently, the GLUE and Bayesian methods were used to analyze the uncertainty of sensitive parameters and further to produce their posterior distributions. Based on their posterior parameter samples, TOPMODEL’s simulations and the corresponding UA results were conducted. Results show that the form of exponential decline in conductivity and the overland flow routing velocity were sensitive parameters in TOPMODEL in our case. Small changes in these two parameters would lead to large differences in flood simulation results. Results also suggest that, for both UA techniques, most of streamflow observations were bracketed by 95PPU with the containing ratio value larger than 80 %. In comparison, GLUE gave narrower prediction uncertainty bands than the Bayesian method. It was found that the mode estimates of parameter posterior distributions are suitable to result in better performance of deterministic outputs than the 50 % percentiles for both the GLUE and Bayesian analyses. In addition, the simulation results calibrated with Rosenbrock optimization algorithm show a better agreement with the observations than the UA’s 50 % percentiles but slightly worse than the hydrographs from the mode estimates. The results clearly emphasize the importance of using model uncertainty diagnostic approaches in flood simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号