首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This study was conducted to quantify agricultural land degradation in the Ruba Gered watershed, Ethiopia. The watershed was divided into 12 land mapping units (LMU) after superimposing maps of soil, slope, land use/cover, and elevation. Subsequently, cultivated land was delineated to assess degradation types and severity based on standard approaches. Sheet erosion was estimated using the revised universal soil loss equation. Composite soil samples were collected from each LMU to quantify key soil nutrients (OM, total nitrogen, available phosphorus, and available potassium) lost by sheet erosion. The annual average soil loss due to sheet erosion was estimated to be 17.4 t ha?1 yr?1, with average annual nutrient losses estimated as 246.5 kg ha?1 organic matter, 12.4 kg ha?1 total nitrogen, 0.1 kg ha?1 available phosphorus, and 1.6 kg ha?1 available potassium. The study revealed that substantial quantities of soil and nutrients are lost every year in the study area due to severe sheet erosion. This amount of nutrient loss severely degrades soil and reduces soil fertility.  相似文献   

2.
Abstract

Erosion rates in residual limestone soils in a humid climate were measured for 10 years at one site, and for 4 years at another site, using erosion pins. Erosion pins were placed in gully floors and on convex divides between adjacent gullies, on abandoned land where vegetation had been removed. We measured an average erosion rate of 20 mm yr?1 over 10 years at one site and only 5 mm yr?1 over 4 years at another site where chert gravel was common on the surface. The 10-year average erosion rate of divides (26 mm yr?1) was significantly greater than the average erosion rate of gullies (14 mm yr?1), suggesting control by different processes, some of which may be seasonal. In winter, it was observed that frost action produced a thin layer of loose soil on the surface of divides. In summer, a hardpan developed on divides, as the soil loosened by winter frosts was transported to gullies, likely by rainsplash or dry ravel. The diffusive processes of frost action, rainsplash, and dry ravel appear to shape the convex divides in this study. Down-cutting of gullies requires channelized flow produced by intense rainfall, which is more common in summer for this location.  相似文献   

3.
沙漠沟谷暴雨洪水侵蚀产沙特征   总被引:1,自引:1,他引:0  
在半干旱区的季节性沙漠沟谷,暴雨引发的洪水过程侵蚀产沙强度大,水土流失严重,对区域及下游河道生态造成严重威胁。以毛布拉孔兑的支沟苏达尔沟为研究对象,以苏达尔沟2011—2015年6次暴雨洪水事件的观测数据为基础,分析洪水流量、泥沙浓度及地表沉积物粒度特征,给出暴雨洪水侵蚀产沙输沙特征。结果表明:观测期间暴雨洪水侵蚀产沙量平均每次约37.69×10~4t,产沙模数为0.57×10~4t·km-2;其中最大的洪水事件130721号暴雨洪水过程侵蚀产沙量高达90.47×10~4t,产沙模数达1.36×10~4t·km-2。流域总侵蚀产沙以0.25~0.063 mm泥沙为主,约占总侵蚀量74%。洪水总侵蚀产沙量随暴雨产流强度增强而增加,同时下游沙漠沙地段产沙贡献比重也随之增加,风沙贡献也相应增大。坡面侵蚀约占暴雨洪水总侵蚀的4.37%,且主要集中在上游砒砂岩坡面。  相似文献   

4.
Abstract

With the recent technological advances offered by SfM-photogrammetry, we now have the possibility to study gully erosion at very high spatial and temporal scales from multi-temporal DEMs, and thus to enhance our understanding of both gully erosion processes and controls. Here, we examine gully degradation and aggradation at a gully headcut and at four re-incisions along a gully reach in Northern Ethiopia. Environmental controls recorded are topography rainfall, runoff, land use and cover, land management, and soil characteristics. The overall vulnerability of the catchment to erosion is low as calculated from the RUSLE (average 11.83 t ha?1 y?1). This reflects the successful land management of the past years. The runoff coefficient was on average 7.3% (maximum 18.2%). Runoff events caused most geomorphic change in the gully, but slumping of the gully bank also occurred on dry days. Most geomorphic change was caused by one major rainfall event of 54.8 mm d?1, and smaller runoff events caused both degradation and aggradation, often asynchronous between studied sites. Although most research focuses on gully heads alone, re-incisions at lower locations can still cause important gully degradation, which ultimately will reach the gully head and cause instability.  相似文献   

5.
选择川中丘陵区和三峡地区四川盐亭、南充和重庆开县的4个小流域,采集塘库沉积泥沙137Cs样品,确定了1963年以来塘库淤沙量,并据此分析了流域输沙模数和侵蚀模数。研究表明,开县春秋沟的淤沙模数最高,为1869t.km-2.a-1;盐亭武家沟和集流沟分别为701t.km-2.a-1和710 t.km-2.a-1;南充天马湾沟为566 t.km-2.a-1。对小流域地貌特征的分析和谷地水田取样结果表明,除塘库淤积区外,各小流域谷地内基本无泥沙淤积。因此,除南充天马湾沟按现有水面面积作为淤积面积求算的淤沙模数明显偏小外,其他小流域的塘库淤沙模数基本可以表征各研究小流域的侵蚀模数。对研究小流域侵蚀产沙影响因素的分析表明,除降雨和土地利用状况外,地形起伏、土壤抗蚀性及岩层产状也是三地侵蚀程度差异的重要原因。  相似文献   

6.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

7.
The landscape evolution in Neogene intramontane basins is a result of the interaction of climatic, lithologic, and tectonic factors. When sedimentation ceases and a basin enters an erosional stage, estimating erosion rates across the entire basin can offer a good view of landscape evolution. In this work, the erosion rates in the Guadix–Baza basin have been calculated based on a volumetric estimate of sediment loss by river erosion since the Late Pleistocene. To do so, the distribution of a glacis surface at ca. 43 kyr, characterised by a calcrete layer that caps the basin infilling, has been reconstructed. To support this age, new radiometric data of the glacis are presented. The volume of sediment loss by water erosion has been calculated for the entire basin by comparing the reconstructed geomorphic surface and the present-day topography. The resulting erosion rates vary between 4.28 and 6.57 m3 ha− 1 yr− 1, and are the consequence of the interaction of climatic, lithologic, topographic, and tectonic factors. Individual erosion rates for the Guadix and Baza sub-basins (11.80 m3 ha− 1 yr− 1 and 1.77 m3 ha− 1 yr− 1 respectively) suggest different stages of drainage pattern evolution in the two sub-basins. We attribute the lower values obtained in the Baza sub-basin to the down-throw of this sub-basin caused by very recent activity along the Baza fault.  相似文献   

8.
Tectonically active coastal regions of the world recently have been suggested to supply the bulk of sediment from land to the oceans. Seabed sampling on the continental shelf and in coastal embayments of the north-east Gulf of Alaska (Alsek River to Prince William Sound) was performed to examine the temporal and spatial variability of sediment accumulation in a mountainous coastal setting. Cores of varying lengths (30–300 cm) were collected at 84 stations to provide information on sedimentary processes using radiochemical (210Pb and 137Cs) techniques. Four types of 210Pb activity profiles were observed, dominantly reflecting steady-state sediment accumulation. However, nonsteady-state profiles also were measured, resulting in part from episodic deposition near glacier-fed rivers and on the Copper River Delta. Sediment accumulation rates in the eastern half of the study area are highest at midshelf depths (≈100 m) (≥10 mm yr?1) and near rivers draining the Bering Glacier (≈20 mm yr?1). On the Copper River Delta, sediment accumulation rates are highest for the delta front (> 20 mm yr?1) and decrease westward along the sediment dispersal route. Total annual sediment accumulation is 90–140×106 tons yr?1 on the shelf in the study area. Annual sediment accumulation for the total marine environment in the study area (including Icy and Yakutat Bays) exceeds 250×106 tons yr?1, potentially making this region the largest sink for sediment in North America. Spatial patterns in sediment accumulation on the shelf are similar between centennial and Holocene time-scales, reflecting the dominance of the Copper River and Bering and Malaspina glaciers as sediment sources. Temporal variability in accumulation rates between centennial and Holocene time-scales exists for portions of the study area near fiords and demonstrates the considerable changes that occur in sediment supply during glacial advances and retreats.  相似文献   

9.
This research assessed the soil erosion threat in the Congo Nile Ridge Region of Rwanda. The study forecasted erosion by applying the Revised Universal Soil Erosion (RUSLE) with five factors (rainfall, soil, topography, cover management, and support practices) and spatial data. About 85.5% of the area under investigation was predisposed to erosion with unsustainable average soil loss rates of > 1 t/ha/yr. The outcomes of the research highlighted that the average rate of estimated soil loss in the region prone to erosion was > 63.62 t/ha/yr, resulting in an overall annual predicted soil loss of approximately 44 × 106 t in 2016. All of the districts studied have steep slope gradients (30.4%–36.1%) and high annual rainfall totals (1199–1484 mm/yr), except Rubavu district. More than 88.8% of croplands had unsustainable average soil loss rates of > 1 t/ha/yr. The analysis indicated that both terracing and strip cropping have the potential to reduce rates of soil loss in the farmland, by 64.4% and 10.4%, respectively. The results of this study will serve as a baseline for soil erosion mitigation and land-use planning in the study area and Rwanda at large.  相似文献   

10.
Preserving soils is a major challenge in ensuring sustainable agriculture for the future. Soil erosion by water is a critical issue in the Mediterranean regions and usually occurs when high-erosive precipitation is in temporal association with poor vegetation cover and density. Modelling soil erosion risks over large spatial scales suffers from the scarcity of accurate information on land cover, rainfall erosivity and their intra-annual dynamics. We estimated the soil erosion risk on arable land in a Mediterranean area (Grosseto Province, southern Tuscany, Italy) and investigated its potential reduction as a response to the change in intra-annual distribution of land cover due to the increase of perennial forage crops. A GIS-based (R)USLE model was employed and a scenario analysis was performed by setting criteria for raising the performance of perennial forage crops. Statistical data on agricultural crops provided an insight into current intra-annual land cover dynamics. Rainfall erosivity was computed on the basis of 22-year hourly precipitation data. The model was used to: i) quantify the potential soil losses of arable land in the study area, ii) identify those areas highly affected by erosion risks iii) explore the potential for soil conservation of perennial crops, thereby enabling appropriate preventive measures to be identified. The erosion rates, averaged over an area of about 140’000 ha, are estimated to 33.42 Mg ha−1 y−1. More than 59% of the study area was subjected to soil losses higher than 11 Mg ha−1 y−1 (from moderate to severe erosion) and the highest rates are estimated for steep inland areas. Arable land with severe soil erosion rates (higher than 33 Mg ha−1 y−1) represent about 35% of the whole study area. The risk of soil loss by water erosion in the study area is estimated to be reduced on average by 36% if perennial crops are increased in terms of 35% of the total arable land. The soil erosion data produced compared well with the published local and regional data. This study thus provides useful preliminary information for landscape planning authorities and can be used as a decision support tool in quantifying the implications of management policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号