首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)的ERA5客观再分析资料、气象卫星合作研究所(Cooperative Institute for Meteorological Satellite Studies,CIMSS)...  相似文献   

2.
3.
对发生在北太平洋西部中高纬度海洋上的两个爆发性气旋和一个非爆发性气旋进行了非地转ω方程诊断分析。认为强的温度平流、涡度平流、位涡平流和凝结潜热释放是使气旋爆发性发展的主要因子,爆发性气旋发展过程中是一特殊的斜压过程、存在着某种自我激发的机制。非爆发性气旋不但其发展因子(如涡度平流、温度平流、位涡平流、潜热释放等)在量的方面较爆发性气旋要小,自我激发性机制表现得也不明显。爆发性气旋与非爆发性气旋的发  相似文献   

4.
朱锁凤  邢谦 《海洋预报》1995,12(1):31-36
本文根据MM4模式输出资料,利用平衡模式的ω-方程对1983年4月25-26日的模式气旋作了诊断分析,结果显示,气旋爆发性剧烈发展,与大尺度加热,积云对流加热,温度平流,涡度平流等物理因子密切相关,其中以温度平流和非绝热热尤为重要。  相似文献   

5.
利用FNL(Final Analysis)再分析资料对西北太平洋上三个爆发性气旋,即2007年11月18—21日的OJ(Ok-hotsk-Japan Sea Type)型,2012年1月10—13日的PO-O(Pacific Ocean-ocean Type)型,以及2014年3月28—31日的PO-L(Pacific...  相似文献   

6.
通过对西北太平洋最近九年爆发性气旋的分析表明:气旋的爆发性发展主要发生在冬半年的海洋上,集中在日本东南海域,且有明显的季节性。加深率以1.1贝吉龙居多。其发展过程的云形特征可归为四类:南北逗点云系迭加类;气旋锢囚性发展类;斜压叶状云系类和东西云系迭加类。  相似文献   

7.
一个温带海洋气旋爆发性发展的动力学分析   总被引:3,自引:0,他引:3  
本文对1982年3月11~16日出现在西北太平洋地区的一个强温带海洋气旋的爆发性发展过程进行了诊断分析。重点讨论了斜压不稳定和非绝热加热过程在气旋发展不同阶段的特点和相互作用。分析揭示,在气旋发展初期低层与高层扰动在垂直方向是分离的,尺度和移速都不同。由高低层等熵位涡扰动的相对位相分析发现,在发展初期斜压不稳定条件对发展是不利的,而在爆发阶段则非常有利。由湿位涡和水汽辐合,等熵运动和非地转运动分析指出,非绝热加热过程在前边两个阶段都很重要。在爆发阶段斜压不稳定与非绝热加热过程相互作用,产生正反馈,使气旋得到爆发性发展。  相似文献   

8.
9.
本文分析了东亚地区的实例,指出在冬季冷涌爆发后其反馈过程所产生的净科氏力项正值与海上动量辐合的相重地区,有利于急流加强增强斜压动力作用,在海洋加热场共同作用下可引起气旋爆发性发展。在气象炸弹出现后,又有利于寒潮爆发和再次出现冷涌,有时能引起又一个气象炸弹出现,两者之间可产生连锁反应。由此说明冬半年冷涌爆发与气旋爆发性发展存在着联系,这种联系还可说明气象炸弹出现的时间和地区的集中性。  相似文献   

10.
利用2008?2018年逐小时自动站资料、常规地面高空观测资料、NCEP-FNL资料,统计黄、渤海7级及以上气旋大风过程,围绕气旋加深率和气压梯度讨论气象因子与气旋强度和发展关系,根据Petterssen地面气旋发展公式讨论温度平流、涡度平流和非绝热加热在气旋中的作用。结果表明:(1) 70.5%气旋入海后加强,14.7%成为爆发性气旋,17.6%气旋入海过程强度不变,11.7%气旋入海后减弱。影响黄、渤海的温带气旋过程主要发生在秋季,春冬季次之,夏季一次也没有出现过。入海发展的气旋多位于200 hPa高空急流出口左侧或者分流辐散区,入海减弱的气旋多位于高空急流出口右侧。(2)影响黄、渤海域的气旋有3类:自西北向东南移动的蒙古气旋(17.6%);自西向东移动的黄河气旋(49%);自西南向东北移动的江(黄)淮气旋(33.4%)。江(黄)淮气旋在秋季容易发展为爆发性气旋。黄河气旋和蒙古气旋入海后最大风区域通常出现在气旋的西北象限(或偏西象限),江(黄)淮气旋最大风区域出现在气旋的东南象限。(3)温度平流是气旋入海发展最重要的物理量因子,温度平流对气旋入海发展比对气旋强度更敏感。5次爆发性气旋过程中温度平流和涡度平流均高于其他气旋过程。非绝热加热与气旋强度的相关性较强,与气旋发展相关性弱。(4)江(黄)淮气旋过程中温度平流和非绝热加热较强,黄河气旋过程中涡度平流较强,涡度平流和非绝热加热对蒙古气旋的作用较弱。  相似文献   

11.
本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的0.125(°)×0.125(°)的ERA-Interim再分析资料、美国国家航空航天局(National Aeronautics and Space Administration,NASA)提供的MODIS(Moderate Resolution Imaging Spectroradiometer)可见光云图、气象卫星合作研究所(Cooperative Institute for Meteorological Satellite Studies,CIMSS)提供的GOES-EAST红外卫星云图等资料以及WRF(Weather Research and Forecasting)数值模式的模拟结果,对2003年3月北大西洋上一个爆发性气旋B“吞并”另一个气旋A后快速发展机制进行了分析。气旋A和B均生成于美国东部,气旋A于2003年3月5日06 UTC生成,气旋B于6日00 UTC生成,且比气旋A向东北方向移动得更快,7日18 UTC达到最大加深率3.27 hPa·h-1。在北大西洋中部地区,从8日00 UTC开始,气旋B吞并气旋A后形成气旋C,8日12 UTC气旋C中心气压达到最低值938.3 hPa。高空急流、低空水汽输送和潜热释放为气旋A和气旋B的快速发展提供了有利的环流背景场。气旋B吞并气旋A的过程经历三个阶段:前期阶段、吞并阶段、完成阶段。利用WRF模式模拟结果的分析表明,气旋A和B之间建立水汽输运通道,水汽从气旋A向气旋B输送。气旋B吞并气旋A后形成气旋C快速发展的主要原因是暖平流的作用。  相似文献   

12.
利用美国国家环境预报中心发布的FNL资料、红外卫星云图资料和船测资料,对2016年10月17—19日某船舶在东南太平洋遭遇的一次温带气旋过程进行研究,以此为大洋航线上温带气旋预报保障能力提高积累经验。结果表明:(1)温带气旋A由绕极槽北伸切断发展而来,自西向东移动过程中在南太平洋大洋中部与另一气旋B合并加强对船舶航行造成影响;(2)气旋A初生阶段,大气低层旋转程度较强;成熟发展阶段在近地面、大气上层旋转程度较强;当气旋B初生发展时,气旋A中心附近自500 hPa以下为绝对涡度小值区,其上为绝对涡度大值区,绝对涡度垂直轴线向近B一侧倾斜;(3)槽后及气旋中心附近正涡度平流与槽前随高度增强的暖平流共同促使气旋发展。  相似文献   

13.
1 IwrRODUcrIONIt is necessary to understand disastrous weather systems as the activities of exploitingand uti1izing marine resources, especialIy for the needs of navigation and oil-gas prospecting.Typhoon is the most frequent and dangerous disastrous weather system in summer-autumnseason in the Nolthwest Pacific Ocean. The explosive cyclogenesis developing quickly overocean is the most terrible weather system in winteL The explosive cycnogenesis grows fastwith high intensity of violent wi…  相似文献   

14.
利用1949—2011年CMA-STI热带气旋最佳路径数据集,分析了西北太平洋累积气旋能量(ACE)的年代际变化特征。结果表明,西北太平洋热带气旋(ACE)的年代际变化主要分为1957—1967高值期、1976—1986过渡期和1998—2008低值期。其中强热带风暴(STS)、台风(TY)和超强台风(SuperTY),特别超强台风是决定成分。副热带高压偏弱,垂直风切变偏小,低纬度低空正涡度异常偏东以及低纬度海表面温度(SST)正异常偏东等背景场的年代际特征,有利于形成ACE的年代高值期。  相似文献   

15.
本文利用再分析资料和WRFV3.9模式(Weather Research and Forecasting Model)对2020年7月22-24日发生在黄海海域的一次爆发性气旋进行了研究,并对其演变过程和发展机制进行了详细分析。该气旋22日12UTC在山东南部生成,入海后开始爆发性发展,最大加深率达到1.2 Bergeron,23日在黄海中部气压降至最低990 hPa左右,24日在韩国登陆。高空强辐散、低层的暖舌结构、水汽输送和下垫面热通量的变化增强了大气斜压性,使其迅速发展。使用WRF模式对气旋进行模拟,涡度的诊断分析表明,大气低层强斜压性主要通过涡度方程的散度项对气旋的发展起作用,对流项在涡度发展旺盛的时刻也有一定影响。海温的敏感性试验表明,海温变化对气旋移动路径和中心气压影响明显。  相似文献   

16.
南大洋夏季气旋的统计特征   总被引:2,自引:0,他引:2  
为增加对南半球气旋及爆发性气旋的理解,利用美国国家环境预报中心NCEP(National Centers for Environmental Prediction)提供的1(°)×1(°)FNL格点资料对南大洋2004~2007年3个夏季(12,1,2月)热带地区以外的气旋及爆发性气旋的位置及路径等特征进行统计分析,发现1月份为南大洋夏季气旋与爆发性气旋发生发展的高峰月,55°S~70°S为气旋分布最大值区,较多的气旋生成于南美洲东部、南极半岛附近,而爆发性气旋则大多生成于澳大利亚大陆西南50°S~60°S内,南极半岛东北部以及20°E,60°E附近,并且随着夏季向秋季过渡,南大洋气旋位置分布逐渐向高纬度集中。南大洋夏季气旋及爆发性气旋路径走向大多为东-东南走向,个别为东北走向。南大洋夏季气旋生命周期平均为2~6 d,水平尺度平均约为1000 km,爆发性气旋一般维持在1周左右,水平尺度平均约为3000 km。特殊的地理环境使得南大洋气旋具有发生频率高、中心气压值低、水平尺度大等特点。  相似文献   

17.
Which is more important for tropical cyclone (TC) intensity and intensification, sea surface temperature (SST) or tropical cyclone heat potential (TCHP)? Investigations using best-track TC central pressures, TRMM/TMI three-day mean SST data, and an estimated TCHP based on oceanic reanalysis data from 1998 to 2004, show that the central pressure is more closely related to TCHP accumulated from TC formation to its mature stages than to the accumulated SST and its duration. From an oceanic environmental viewpoint, a rapid deepening of TC central pressure occurs when TCHP is relatively high on a basin scale, while composite distributions of TCHP, vertical wind shear, lower tropospheric relative humidity, and wind speed occurring in cases of rapid intensification are different for each TC season. In order to explore the influence of TCHP on TC intensity and intensification, analyses using both oceanic reanalysis data and the results of numerical simulations based on an ocean general circulation model are performed for the cases of Typhoons Chaba (2004) and Songda (2004), which took similar tracks. The decrease in TCHP due to the passage of Chaba led to the suppression of Songda’s intensity at the mature stage, while Songda maintained its intensity for a relatively long time because induced near-inertial currents due to the passage of Chaba reproduced anticyclonic warm eddies appearing on the leftside of Chaba’s track before Songda passed by. This type of intensity-sustenance process caused by the passage of a preceding TC is often found in El Niño years. These results suggest that TCHP, but not SST, plays an important role in TC intensity and its intensification.  相似文献   

18.
The modulation of tropical cyclogenesis over the southern South China Sea (SSCS) by the El Nin o- Southern Oscillation (ENSO) is examined in October-December (OND), when tropical cyclone (TC) activities are most active in this region. The results reveal that there were more TCs formed over the SSCS during La Nin a years and less TCs during El Nin o years. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for El Nin o and La Nin a years separately, which could account for the changes of TC frequency over the SSCS in different ENSO phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results show that the mid-level relative humidity makes the largest contribution to the ENSO modulation of tropical cyclogenesis over the SSCS. Although warmer sea surface temperatures (SSTs) and larger amount of evaporation from the ocean surface were observed over the SSCS during El Nin o years, anomalous descending motions due to the anomalous Walker circulations inhibited the upward transports of water vapor and led to less moisture contents in the middle troposphere, which suppressed TC formations.  相似文献   

19.
基于1979-2019年NCEP-DOE再分析资料、中国气象局发布的热带气旋(TC)最佳路径数据集和HadISST全球海温资料等,研究了2019年11月西北太平洋TC生成频数异常偏多的可能原因.结果表明:2019年11月西太平洋副热带高压(WPSH)强度偏强、脊线偏北,其南侧偏东气流与越赤道气流交汇形成的西北太平洋热带...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号