首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We invert ISC PcP and PKP absolute and differential traveltimes in an attempt to infer the long-wavelength topography of the core-mantle boundary (CMB). The data selection and processing methods are described and evaluated. These travel-time data are very noisy and the geographic distribution of the data is highly non-uniform, inhibiting reliable inference of CMB topography. Spatial averaging enhances the coherent component of the residual variance (related to heterogeneity), however, the random component of the variance is much larger than the coherent component. We show that for PcP data the coherent signal due to mantle heterogeneity overshadows that arising from the CMB, and that the effects of mantle heterogeneity are mapped into our inferred CMB solutions. The PcP data are not correlated across the spatial averaging bins and seem to have a strong bias due to small-scale structure and/or noise. The non-uniform geographic sampling of the data plays a role in the mapping of mantle heterogeneity onto the CMB. Spatial patterns of CMB models inferred from different phases do not agree. Amplitudes of seismically inferred CMB undulations vary greatly. The sensitivity of inferred CMB models to the processing, spatial averaging procedure, and inversion techniques are investigated. Topographic amplitudes increase strongly with increasing input residual variance. The power spectrum of inferred topography indicates that there are unmodelled heterogeneities that must be described with spherical harmonics of degree 6 and higher. Based on this work, we conclude that reliable inference of long-wavelength CMB topography is not likely with the current ISC data set or with a spherical harmonic expansion truncated to degree and order 6.  相似文献   

3.
The concept of a deformation of a simple, non-rotating, spherically symmetric earth model with a fluid outer core, although it is a highly artificial physical situation, provides a useful computational algorithm that allows one lo determine analytically modes of vibration without any Love-number theory. In particular, on these analytically determined modes, we impose regularity conditions at the centre and boundary conditions at the surface, as well as conditions of continuity at the inner-core-outer-core boundary and at the core-mantle boundary. They lead to an eigenvalue equation for the frequency of oscillation. The range of frequencies obtained in this way for different earth models gives an indication of the influence of compressibility and non-homogeneity on the spectrum of eigenfrequencies.  相似文献   

4.
Summary. Results from several recent studies suggest that there are lateral heterogeneities of up to a few per cent in the lowermost 150–200 km of the mantle (Bullen's D " region). Inferred anomaly sizes span the range from less than 50 km to greater than 1000 km.
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region.  相似文献   

5.
6.
7.
8.
Cooling the core and mantle by plume and plate flows   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
Adopting Born and ray approximations, time-domain synthetic seismograms for P-P and P-S scattering from a plane wave incident on a thin, laterally heterogeneous layer are presented in this paper. The time-domain P coda is a convolution between a structure function and the second-order derivative of the time function of the incident P wave. Examples of synthetic seismograms are given using a time function from a computed short-period seismogram for a point explosive source in a half-space. These show that it is impossible, with realistic values of the parameters involved, to generate significant codas when only single scattering is involved.  相似文献   

12.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号