首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
黑河下游额济纳绿洲区和中下游沿黑河干流河床附近的潜水位埋深较浅,是维系地表植被生长的重要因素。中游高台附近潜水位存在每年双峰值的变化,较之下游额济纳绿洲潜水位每年单峰值的变化更有利于植被的生长。在包气带剖面中,同一时刻水土势、含水量、含盐量随深度的变化趋势基本相同。采样点包气带土壤中易溶离子含量相对较低,全盐量小于5%,中游采样点土壤中以HCO3-为主,下游以SO42-为主,由SO42-、Cl-和Na+、Ca2+组成的盐类构成了包气带土壤中的主要盐分。土壤中易溶离子含量自地表至潜水面之间随深度总体上呈减小趋势。植被的根系分布对包气带土壤含水量、水土势和易溶离子含量随深度的分布有着重要的影响,在植物根系发育带的土壤中含水量、水土势和易溶离子含量升高。  相似文献   

2.
甘肃黑河中下游影响绿洲植被发育的某些因素   总被引:5,自引:0,他引:5  
黑河下游额济纳绿洲区和中下游沿黑河干流河床附近的潜水位埋深较浅,是维系地表植被生长的重要因素.中游高台附近潜水位存在每年双峰值的变化,较之下游额济纳绿洲潜水位每年单峰值的变化更有利于植被的生长.在包气带剖面中,同一时刻水土势、含水量、含盐量随深度的变化趋势基本相同.采样点包气带土壤中易溶离子含量相对较低,全盐量小于5%,中游采样点土壤中以HCO3-为主,下游以SO24-为主,由SO24-、C1-和Na 、Ca2 组成的盐类构成了包气带土壤中的主要盐分.土壤中易溶离子含量自地表至潜水面之间随深度总体上呈减小趋势.植被的根系分布对包气带土壤含水量、水土势和易溶离子含量随深度的分布有着重要的影响,在植物根系发育带的土壤中含水量、水土势和易溶离子含量升高.  相似文献   

3.
黑河下游额济纳绿洲区和中下游沿黑河干流河床附近的潜水位埋深较浅,是维系地表植被生长的重要因素.中游高台附近潜水位存在每年双峰值的变化,较之下游额济纳绿洲潜水位每年单峰值的变化更有利于植被的生长.在包气带剖面中,同一时刻水土势、含水量、含盐量随深度的变化趋势基本相同.采样点包气带土壤中易溶离子含量相对较低,全盐量小于5%,中游采样点土壤中以HCO3-为主,下游以SO24-为主,由SO24-、C1-和Na 、Ca2 组成的盐类构成了包气带土壤中的主要盐分.土壤中易溶离子含量自地表至潜水面之间随深度总体上呈减小趋势.植被的根系分布对包气带土壤含水量、水土势和易溶离子含量随深度的分布有着重要的影响,在植物根系发育带的土壤中含水量、水土势和易溶离子含量升高.  相似文献   

4.
降水和人工灌溉是黑河中游浅层地下水重要的补给来源。长期以来入渗补给量评价采用经验参数法,但没有成熟的监测方法和实证数据。采用人工溴示踪法研究黑河中游不同灌溉条件和不同深度条件下的地下水入渗补给规律。结果表明:研究区大气降水条件下包气带溴离子含量峰值年均运移距离为21.25 cm,年平均入渗补给量为11.93 mm,入渗补给系数为0.1;大水漫灌条件下包气带溴离子含量峰值年均运移距离为86.51 cm,年平均入渗补给量为148.7 mm,入渗补给系数为0.16;小水漫灌条件下包气带溴离子含量峰值年均运移距离为46.35 cm,年平均入渗补给量为 53.81 mm,入渗补给系数为0.07;滴灌条件下年包气带溴离子含量峰值年均运移距离为41.72 cm,年平均入渗补给量为52.6 mm,入渗补给系数为0.11。人工溴示踪剂应投放在包气带水分单向入渗下行区,一般西北内陆盆地在地表3 m以下为宜。此研究成果可为黑河流域地下水资源评价提供实证参数,对西北内流盆地地下水水资源量与合理开发利用的科学认识具有重要意义。  相似文献   

5.
包气带在干旱半干旱地区地下水补给研究中的应用   总被引:3,自引:0,他引:3  
在干旱半干旱地区,包气带的溶质和同位素剖面不但可以提供较长时间尺度上的地下水补给信息,而且记录了过去气候变化与环境变化信息。本文基于学科组近10年的研究成果,以鄂尔多斯盆地为例(包括南部的黄土高原和北部的沙漠高原),将包气带和饱和带结合起来,利用多种环境示踪技术,提升了包气带在干旱半干旱地区地下水研究中的潜力,并将其应用到地下水补给历史重建、地下水补给机制确定、植被变化对地下水补给影响评价和地下水污染物全过程示踪中。研究表明,由于在干旱半干旱地区,包气带较厚且补给量有限,地下水和现今的浅表水文过程未达到水力平衡,如在沙漠高原西部,近2 500 a降水尚储存在包气带13 m以浅,地下水是4 000 a以前补给的,其水化学特征与浅部包气带水差异巨大;而在黄土高原,补给量较大,但包气带巨厚,年降水仍需要几十到上百年时间入渗到地下水(但并不意味着没有补给,其土壤水在包气带中平均入渗速率为0.1~0.3 m·a-1),包气带浅部溶质含量较深部和地下水中的高;典型黄土塬区的地下水均不含氚,地下水年龄在几百到上万年。黄土内部层状均匀的土壤质地特征和相对较老的地下水年龄揭示的均匀活塞流入渗是黄土塬区浅层地下水补给的主要方式。黄土高原退耕还林还草和沙漠区植被恢复导致地下水补给呈现不同程度的减少,反映在包气带上表现为溶质含量的增加,可用于定量化确定地下水补给量的变化。本文强化了包气带在干旱半干旱地区地下水补给研究中的作用,在未来地下水资源评价、地下水污染全过程刻画中应得到重视。  相似文献   

6.
《地下水》2016,(2)
研究包气带含水率的变化特征,对于防治陕西泾阳南部黄土台塬黄土滑坡具有重要意义。通过室外原位渗水试验,测定不同导管处土壤体积含水率和土水势能,实验表明:随着时间推移,包气带土壤含水率最大值所处位置逐渐向下运移,且土壤最大体积含水率减小;黄土包气带深度为1 m时土壤体积含水率达到最大;随深度的增加,含水率变化幅度逐渐变小。  相似文献   

7.
浅层包气带地温与含水量昼夜动态的实验研究   总被引:7,自引:1,他引:7  
西北荒漠化地区,包气带中的水分除来自大气降水外,还来自凝结水。凝结水对维持荒漠地区的植被生态环境起到至关重要的作用,而凝结水的形成机制又反映在包气带地温与含水量的昼夜动态过程中。文中报告了室外沙坑浅层包气带地温与含水量观测的实验结果。土壤含水量变化采用原位测试的方法观测,避免了传统称重法产生的干扰和不确定性。实验中对深度0~30cm范围的土壤温度进行了高密度观测。结果表明,温度梯度对水汽的运移起到主控作用,温度梯度方向向下,土壤含水量增加,反之,含水量减少。通过热传导方程对土壤中的传热过程进行分析,得到傅立叶级数表示的温度波方程,用于预测不同深度土壤响应地表条件而产生的温度变化。实验中还对近地表微气象以及土壤负压等因素进行了观测。  相似文献   

8.
随着西北旱区生态恢复工程的实施,该区生态环境持续改善,植被盖度不断增加。但植被冠层截留与蒸腾耗水加剧了包气带水分的亏空程度,减小了降雨对地下水的补给。采用原位试验方法,分析了植被覆盖区和裸土区不同深度土壤水势的变化规律。结果表明,受蒸发和蒸腾的共同作用,植被覆盖区平均土壤水势(-74k Pa)远低于裸土区(-16k Pa),且变化剧烈,土壤水以向上运动为主。而裸土区土壤水势高,变化小,40cm以下土壤水向下运移,因此可以持续补给地下水。采用Hydrus-1D软件进行了长序列土壤水数值模拟,定量分析了植被盖度增加与地下水补给的关系。数值模拟结果表明,在裸土条件下,降雨对地下水的补给量介于82~333mm/a之间,平均值为197mm/a,平均降水入渗补给系数为0.53。而在植被覆盖的情况下,地下水的补给量几乎为0。最后,从植被蒸腾耗水和冠层降水截留2个方面讨论了旱区植被盖度增加对降雨入渗补给地下水的影响,提出了旱区水与生态和谐发展的建议。  相似文献   

9.
陈振宇  赵禹  白金  赵寒森  梁楠  刘拓  姚远 《地质论评》2024,70(3):2024030019-2024030019
土壤盐渍化问题严重制约着我国干旱—半干旱区农业可持续高质量发展,了解包气带土壤盐分离子分布特征及垂向运移机制对科学防治土壤盐渍化具有重要意义。通过精细化采集新疆焉耆盆地2 m深度剖面土壤,测定样品机械组成和8种盐分离子含量,计算土壤颗粒分形维数,采用统计学方法分析包气带土壤盐分离子垂向分布特征,对包气带土壤质地与水盐运移间的关系进行探讨。结果表明,博湖剖面包气带土壤主要为非盐渍土,土壤盐分主要受开都河下游地下水水化学类型和矿化度控制,阴阳离子比值约为2∶5,盐分类型主要为Ca2+—HCO2-3和Na+—SO2-4型;焉耆剖面包气带土壤普遍为重度盐渍土,土壤盐分受到开都河下游地下水水化学类型和自身包气带盐分的综合影响,阴阳离子比值约为1∶2,盐分类型主要为Ca2+—SO2-4型和Na+—Cl-型。土壤分形维数和黏粒含量之间显著正相关,与砂粒含量显著负相关,包气带土壤盐分与分形维数间相关性不明显,主要受到土壤粒径组成及其所处深度等综合作用的影响。博湖包气带土壤质地由表层至深部逐渐变粗,盐分含量呈现出在0~80 cm深度的表层和125~200 cm的底部波动大,80~125 cm稳定的变化趋势,盐分离子主要聚集在约30 cm深度粉质黏壤土与粉质黏土层的交界处。土壤盐分运移大致可划分为交互作用段(0~80 cm)、平衡段(80~125 cm)和地下水扰动段(125~200 cm) 3个部分,蒸发作用影响深度约80 cm。焉耆包气带土壤质地由表层至深部逐渐变细,随深度的增加,盐分含量和波动程度均逐渐减小,盐分离子主要聚集在0~10 cm表土层。盐分运移大致可划分为盐分离子上升段(0~120 cm)和平衡段(120~200 cm)两个部分,蒸发作用影响深度约为120 cm。上细下粗型的包气带土壤质地组成是抑制土壤盐渍化较为理想的分布模式,对于焉耆剖面类型可先采取灌溉压盐,然后进行约40 cm深度的翻耕,博湖剖面类型可直接采取50 cm左右深度的深耕,一定程度上能够抑制盐渍化的发生。  相似文献   

10.
黄土高原丘陵沟壑区包气带土壤水运移过程   总被引:1,自引:0,他引:1       下载免费PDF全文
包气带土壤水运移过程是黄土高原生态修复中亟需回答的关键科学问题。环境同位素方法可获取其他方法难以获取的水文过程信息。通过对黄土高原丘陵沟壑区羊圈沟小流域降水、包气带0~150 cm土壤水和绣线菊(Spiraea salicifolia)木质部水等样品的同位素δD和δ18O进行测定。结果表明:羊圈沟小流域降水同位素组成受蒸发作用影响较大,呈现明显分馏效应。包气带土壤水、降水与木质部水同位素组成存在明显月份变化特征。降水是土壤水的主要补给来源,灌丛的水分利用来源主要为降水和土壤水,符合降水-土壤水-植被水的运移特征。灌丛木质部水和20~40 cm土壤水δD和δ18O最为接近,20~40 cm土壤水是灌丛水分利用的主要来源。研究揭示了包气带土壤水运移过程及植物水分利用来源,为土壤水运移过程、模型结构与参数识别等提供科学依据。  相似文献   

11.
利用标定后的TDR100系统原位监测太行山前深厚包气带(30.3 m)的土壤水热动态,根据2011、2012年2 a的监测结果,真实准确透析全剖面土壤水热运移规律。结果表明:厚度大、非均质并受控于多重外界条件的深厚包气带的水热运移,必然是相对滞后的复杂往复运动,水分补给滞后时间为2~3个月;粗颗粒层是良好的输水通道,而细颗粒层(如黏土层)才是决定入渗能力的关键层,对土壤体积含水量变化影响可达15%;浅层水热运移取决于降水蒸发和地表温度,5.0 m以下中深层水热运移常态取决于岩性和地下水位,而强降水入渗和人类活动产生瞬态关键效应。  相似文献   

12.
西北内陆流域下游区天然植被对地下水生态功能具有强烈依赖性,而包气带岩性结构对地下水生态功能具有明显影响,但是在目前的研究中,缺乏定量分析评判。以甘肃石羊河流域下游天然绿洲区为研究区,基于包气带岩性结构野外调查、室内土柱试验和Hydrus1-D数值模拟,研究包气带岩性结构与地下水耦合作用的生态效应,分析不同岩性结构包气带...  相似文献   

13.
基于氢氧同位素的华北平原降水入渗过程   总被引:12,自引:1,他引:11       下载免费PDF全文
华北平原地下水浅埋区水循环主要以垂直方向上的入渗、蒸发和蒸腾的方式存在,同位素可以作为一种有效"示踪剂"揭示降水入渗补给地下水的过程。选择华北平原中、东部地下水浅埋区的衡水和沧州为典型实验点,研究不同降水特征、土壤质地和植被条件下入渗过程的差异性。结果表明,土壤非均质条件下(沧州),降水入渗补给过程中伴随着蒸发、植被蒸腾作用以及与土壤前期水分的强烈混合作用,活塞流入渗的同时土壤100 cm深度可能还存在大孔隙优先流;土壤均质条件下(衡水),降水向下均匀入渗,入渗速度较快,土壤水运动以新水基本代替老水的活塞流为主要形式,并经过强烈的蒸发浓缩作用补给地下水。  相似文献   

14.
冻土温度场分析对于冻土特性研究及冻土地区工程建设具有重要的作用,而冰水相变所产生的相变潜热大大增加了冻土温度场分析的复杂性。针对该问题,基于线热源模型和冻土传热基本理论,在考虑未冻水和相变潜热的情况下计算了冻土导热系数、体积热容和相变热容,分析其与测量初始温度的关系;在分析结果的基础上,对冻土含冰量的光纤测量技术进行了理论修正。基于主动加热光纤(AHFO)法,开展了一系列室内验证试验:在恒定的加热功率和时间下,采用自主研发的光纤光栅(FBG)刚玉管传感器,对同一初始含水量的冻土试样进行温度监测。结果表明:在本文试验条件下,FBG刚玉管传感器的影响半径小于5 cm,可以忽略边界效应;传感器所测温度增量与时间对数线性关系良好,主动加热对于冻土导热系数影响较小,线源模型适用于冻土导热系数测量;冻土导热系数与试验初始温度呈线性增长关系;在初始温度低于-6 ℃时,相变热容趋于稳定;在-6~0 ℃时,相变热容随温度升高逐渐增大,且变化趋势愈渐强烈;当初始温度高于-5 ℃时,相变热容甚至大于冻土自身的体积热容。相关结论为进一步提高冻土含冰量测试技术的精度提供了参考。  相似文献   

15.
兰州新区位于黄土高原西段, 为典型干旱区, 道路修建形成了许多坡度大于30°的工程开挖边坡。在边坡上重建植被对改善局地景观和防治水土流失具有重要的作用, 而坡面土壤水分状况对植被重建影响重大。选择3种整地类型(条形坑、 圆形坑和原状坡样地), 研究兰州新区黄土工程开挖边坡植被重建的初期土壤水分状况, 结果表明: 3种整地类型中条形坑的土壤水分条件最好, 与圆形坑、 原状坡样地土壤水分存在显著差异(P<0.05)。不同灌溉频率下原状坡样地0 ~ 20 cm土层土壤含水量较低, 20 ~ 50 cm土层土壤含水量较高。土壤含水量的变异系数随土层深度的增加而减小, 随灌溉频率的降低而增加。在边坡植被重建初期, 需把土壤水分维持在8.4% ~ 10.8%, 即田间持水量的38% ~ 49%, 才能保证植物正常生育生长。当栽植的植被根系长度大于10 cm时, 可考虑将喷灌频率从每天喷灌改为隔天喷灌, 否则植物有死亡的风险。研究结果可为类似的黄土边坡植被恢复和生态建设提供参考。  相似文献   

16.
包气带水分入渗过程受多种因素的影响。定量研究层状非均质岩性结构和入渗速率对其影响,有助于解决根据不同条件选择单相流模型或水气二相流模型模拟包气带水分入渗过程的问题。结合填埋场等场地地层条件及污废水入渗特征,分别建立了“上细下粗”和“上粗下细”包气带层状非均质岩性结构水分入渗单相流和水气二相流模型,探讨不同层状非均质岩性结构条件下模型的适用性。在“上粗下细”岩性结构模型基础上,进一步探究入渗速率对水气两相运移结果的影响。基于论文模型研究表明:(1)在包气带岩性结构为“上细下粗”的条件下,气相的影响基本可以忽略,可直接采用单相流模型对包气带水分运移进行模拟;在“上粗下细”岩性结构和本次模型设定的底部压力保持不变及污废水泄漏前场地未接受降水入渗补给等条件下,当包气带上下层介质渗透率比值大于16倍时,气相会对水相运移产生明显影响,且下层介质渗透率越小、上下层介质渗透率比值越大,单相流与两相流的运移结果差别越大,需要采用水气二相流模型模拟包气带水分运移。(2)在包气带“上粗下细”岩性结构条件下,入渗速率越大,气相对水流入渗的阻滞作用越明显,此时包气带水分运移模拟应采用水气二相流模型。  相似文献   

17.
为研究降水补给地下水过程中包气带岩土对水化学的影响,在沂源地区采集了不同地表岩土样品开展淋溶和浸泡试验。淋溶结果显示:易溶的Cl~-、SO_4~(2-)、CO_3~(2-)、NO_2~-、NO_3~-等阴离子率先溶解进入淋溶水中,之后K~+,Ca~(2+),Mg~(2+),Fe等含量逐渐增加,且淋溶初期p H值呈碱性,之后向中性过渡。浸泡结果显示:不同类型岩土样经过浸泡5min后,其水化学组分发生了显著变化;随浸泡时间增加,K~+、Na~+、Ca~(2+)、Mg~(2+)、HCO_3~-及含盐量均出现不同程度增加,但Cl~-、SO_4~(2-)在不同类型岩土中含量变化则是不同的。由此推测,降水转入地下水过程中,透过地表浅层包气带时就已经淋溶了大量物质,水化学性质发生了重大变化。  相似文献   

18.
CO2 capture and storage(CCS) has the risk of CO2 leakage, and this leakage always increases soil CO2 concentration, and the long-term CO2 stress damages crop production in farmland. Using maize, the growth characteristics, such as plant height and yield, and physiological indexes(osmoregulation substances and antioxidant enzymes) were explored under different simulative CO2 leakage conditions. Further, the relationship between maize physiolo...  相似文献   

19.
气候变化对黄土碳库效应影响的敏感性研究   总被引:15,自引:3,他引:15       下载免费PDF全文
中国黄土分布广、厚度大,是古气候变化的良好记录载体,然而黄土在大气CO2循环中到底是源还是汇一直是困扰人们的一个问题.本文利用陆相生态系统中的生物地球化学模型,通过敏感性试验,模拟了土壤有机碳对气候变化的响应.结果表明:1)在各种稳定的气候条件下黄土的土壤有机质都是持续增加的,因此可以认为自然条件下黄土是大气CO2的一个汇;2)温度和降水对黄土中土壤有机质含量的影响正好相反,表明湿度是影响黄土地区生态环境的主要因素,温度和降水都是通过对湿度的影响来影响植被生态的;3)地表植被和土壤有机质是黄土碳库与大气CO2之间的重要媒介.黄土表层的生物地球化学过程是影响黄土碳汇效应的主要过程;4)黄土碳库的主要存在形式以次生碳酸盐为主,其次是土壤有机质,气态CO2只占很小比例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号