首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coexisting white micas and plagioclase were studied by electronmicroprobe (EMP), and transmission and analytical electron microscopy(TEM—AEM) in greenschist- to amphibolite-grade metabauxitesfrom Naxos. The TEM—AEM studies indicate that sub-micronscale (0.01–1.0 µm thick) semicoherent intergrowthsof margarite, paragonite and muscovite are common up to loweramphibolite conditions. If unrecognized, such small-scale micainterlayering can easily lead to incorrect interpretation ofEMP data. Muscovite and paragonite in M2 greenschist-grade Naxosrocks are mainly relics of an earlier high-pressure metamorphism(M1). Owing to the medium-pressure M2 event, margante occursin middle greenschist-grade metabauxites and gradually is replacedby plagioclase + corundum in amphibolite-grade metabauxites.The margarite displays minor IVAl3 VI(Fe3+, Al) Si-3 VI--1 andconsiderable (Na, K) SiCa-1Al-1 substitution, resulting in upto 44 mol% paragonite and 6 mol % muscovite in solution. Thecompositional variation of muscovite is mainly described byVI(Fe2+, Mg) Si VI Al-1VI Al-1 and VI(Fe3+Al-1) exchanges, thelatter becoming dominant at amphibolite grade, Muscovite issignificantly richer in Fe than margarite or paragonite. Ca—Na—Kpartitioning data indicate that margarite commonly has a significantlyhigher Na/(Na+ K+Ca) value than coexisting muscovite or plagioclase.Exceptions are found in several greenschist-grade rocks, inwhich M1-formed mussovite may have failed to equilibrate withM2 margarite. The sluggishness of K-rich micas to recrystallizeand adjust composidonally to changing P-T conditions is alsoreflected in the results of mus-covite-paragonite solvus thermometry.Chemical data for Ca—Na micas from this study and literaturedata indicate that naturally coexisting margarite—paragonitepairs display considerably less mutual solubility than suggestedby experimental work. The variable and irregular Na partitioningbetween margarite and muscovite as observed in many metamorphicrocks could largely be related to opposing effects of pressureon Na solubility in margarite and paragonite and/or non-equilibriumbetween micas. KEY WORDS: Ca—Na—K mica; margarite; metabauxite; Naxos; sub-micron-scale mica interlayering  相似文献   

2.
Margarite and Paragonite are found coexisting in amphibolites of the Untere Schieferhülle in the area of the upper Schlegeistal (Zillerthal Alps, Northern Tyrol). These amphibolites are metamorphosed under conditions of the low grade amphibolite facies. The chemical composition of the two micas was determined by the electron microprobe. A maximum of 14 Mol-% margarite and 18 Mol-% muscovite enters into the paragonite, the margarite being entered by 20 to 50 Mol-% paragonite and a maximum of 10 Mol-% muscovite. There seems to be a solubility gap between margarite and paragonite in a range between 15 and 50 Mol-% margarite.At their margins the margarites and paragonites breakdown into a mixture of feldspar and into a fine, microscopically not identifiable phase. Plagioclases having An 28 to An 42 result from breakdown of paragonite, feldspars between An 50 and An 60 probably arose from breakdown of margarite. A definite statement on this probelem is not possible because the smallness and the inhomogeneity of the feldspar grains.Based on the experimental data concerning the stability of margarite, paragonite (±quartz, ±CO2) and kyanite, the P-T-range of the metamorphosis is discussed.  相似文献   

3.
 The lattice constants of paragonite-2M1, NaAl2(AlSi3)O10(OH)2, were determined to 800 °C by the single-crystal diffraction method. Mean thermal expansion coefficients, in the range 25–600 °C, were: αa = 1.51(8) × 10−5, αb = 1.94(6) × 10−5, αc = 2.15(7) ×  10−5 °C−1, and αV = 5.9(2) × 10−5 °C−1. At T higher than 600 °C, cell parameters showed a change in expansion rate due to a dehydroxylation process. The structural refinements of natural paragonite, carried out at 25, 210, 450 and 600 °C, before dehydroxylation, showed that the larger thermal expansion along the c parameter was mainly due to interlayer thickness dilatation. In the 25–600 °C range, Si,Al tetrahedra remained quite unchanged, whereas the other polyhedra expanded linearly with expansion rate proportional to their volume. The polyhedron around the interlayer cation Na became more regular with temperature. Tetrahedral rotation angle α changed from 16.2 to 12.9°. The structure of the new phase, nominally NaAl2 (AlSi3)O11, obtained as a consequence of dehydroxylation, had a cell volume 4.2% larger than that of paragonite. It was refined at room temperature and its expansion coefficients determined in the range 25–800 °C. The most significant structural difference from paragonite was the presence of Al in fivefold coordination, according to a distorted trigonal bipyramid. Results confirm the structural effects of the dehydration mechanism of micas and dioctahedral 2:1 layer silicates. By combining thermal expansion and compressibility data, the following approximate equation of state in the PTV space was obtained for paragonite: V/V 0 = 1 + 5.9(2) × 10−5 T(°C) − 0.00153(4) P(kbar). Received: 12 July 1999 / Revised, accepted: 7 December 1999  相似文献   

4.
Summary The stability of members of the lazulite-scorzalite solid-solution series, (Mg,Fe)Al2 (OH)2(PO4)2, was investigated as a function of T (505 to 675 °C), P (0.1 to 0.3 GPa) and Fe/Mg ratio in hydrothermal synthesis experiments. The oxygen fugacity was controlled by means of the Ni/NiO buffer. It was found that starting from end-member lazulite the stability of the solid-solution members strongly decreases with increasing content of scorzalite component. At 0.2 GPa pure lazulite decomposes at about 660 °C whereas at the same pressure a solid-solution with 80% of lazulite component is only stable up to 590 °C under the oxygen fugacity of the Ni/NiO buffer. The members of the lazulite-scorzalite solid-solution series with limiting composition coexist with an Fe-richer member of the (Mg,Fe)Al(PO4)O series and berlinite. The mixing behaviour of both the lazulite-scorzalite and the (Mg,Fe)Al(PO4)O solid-solution series disregarding small amounts of Fe3+ is interpreted in terms of a model on the basis of a simple mixture for the lazulite-scorzalite system and of an ideal mixture for the (Mg,Fe)Al(PO4)O series. With this model the interaction parameter which expresses the non-ideality of the lazulite-scorzalite solid-solution series amounts to . Zusammenfassung P-T Stabilit?t von Lazulith-Scorzalith Mischkristallen Die Stabilit?t der Glieder der Lazulith-Scorzalith Mischkristallreihe, (Mg, Fe)Al2(OH)2(PO4)2 wurde als Funktion der Temperatur (505 bis 675 °C), des Druckes (0.1 bis 0.3 GPa) und des Fe/Mg-Verh?ltnisses in hydrothermalen Syntheseversuchen untersucht. Die Sauerstoffugazit?t wurde mittels eines Ni/NiO-Puffer kontrolliert. Es konnte festgestellt werden, da? ausgehend vom Lazulith-Endglied die Stabilit?t der Mischkristalle mit zunehmendem Scorzalith-Gehalt stark abnimmt. Reiner Lazulith, MgAl2(OH)2(PO4)2 zerf?llt unter 0.2 GPa bei 660 °C, w?hrend ein Mischkristall mit 80 mol% Gehalt an Lazulith-Komponente nur bis 590 °C unter der Sauerstoffugazit?t des Ni/NiO-Puffers stabil ist. Hierbei koexistieren die Lazulith-Scorzalith Mischkristalle mit Grenzzusammensetzung mit eisenreicheren Mischphasen des Systems (Mg,Fe)Al(PO4)2O und Berlinit. Das Mischungsverhalten sowohl der Lazulith-Scorzalith- als auch der (Mg,Fe)Al(PO4)2O-Reihe wurde mit Hilfe eines quantitativen Modelles auf der Basis einer symmetrischen Mischung für Lazulith-Scorzalith und einer idealen Mischung für das System (Mg,Fe)Al(PO4)2O interpretiert. Mit Hilfe dieses Modelles wurde der Wechelwirkungsparameter , der die Nichtidealit?t der Lazulith-Scorzalith Mischreihe ausdrückt zu bestimmt. Received August 26, 1998; revised version accepted July 30, 1999  相似文献   

5.
IIb trioctahedral chlorite in the Barberton greenstone belt (BGB) metavolcanic rocks was formed during pervasive greenschist metamorphism. The chem‐ical composition of the chlorite is highly variable, with the Fe/(Fe+Mg) ratio ranging from 0.12 to 0.8 among 53 samples. The chemical variation of the chlorite results from the chemical diversity of the host rock, especially the MgO content of the rock, but major details of the variation pattern of the chlorite are due to the crystal structure of the chlorite. All major cation abundances in the chlorite are strongly correlated with each other. Sil‐icon increases with Mg and decreases with Fe, while AlIV and AlVI decrease with Mg and increase with Fe2+. A complex exchange vector explains over 90% of the chlorite compositional variation: Mg4SiFe2+ −3AlVI −1 AlIV −1, which has 3 parts Fe-Mg substitution coupled with one part tschermakite substitution. This ratio is required to maintain the charge and site balances and the dimensional fit between the tetrahedral and octahedral sheets. The subtle change in Al substitution in chlorite implies that AlVI is preferentially ordered in the M(4) site, and about 84% of the AlVI present is in the M(4) sites when they are nearly filled with AlVI. Based on 47 analyzed chlorite-bearing rock samples, chlorite (Chl) composition is strongly correlated with the MgO content of the host rock. Calculated correlation coefficients are +0.91 for SiO2Chl-MgORock, −0.87 for Al2O3Chl-MgORock, +0.89 for MgOChl-MgORock, and −0.85 for FeOChl-MgORock. Only weak correlations have been found between chlorite oxides and other oxides of rock (between same oxides in chlorite and rock: SiO2−0.67, Al2O3 + 0.59, FeO −0.41). However, MgOChl is saturated at about 36 wt% in rocks that have MgO above 22 wt%.The MgOChl is about 5 wt% when the host rock approaches 0 wt% of MgO. This implies that Mg substituting into the chlorite is approximately limited to 1.5–9.2 Mg atoms per formula unit and 1.0–3.2 AlIV. Chlorite geothermometers can not be applied to all BGB samples. However, the empirical chlorite geothermometer based on AlIV of chlorite may be applicable to chlorites formed under metamorphic conditions because it can predict the chemical composition of the chlorite from basaltic and dacitic samples in this study. An estimated temperature of about 320°C for the greenschist metamorphism of the greenstone belt through this geothermometer is consistent with that obtained by other geothermometers. Received: 22 January 1996 / Accepted: 15 August 1996  相似文献   

6.
White mica from the Liassic black shales and slates in Central Switzerland was analysed by transmission electron microscopy (TEM) and electron microprobe to determine its textural and compositional evolution during very low-grade prograde metamorphism. Samples were studied from the diagenetic zone, anchizone and epizone (T ≈100°–450 °C). Phyllosilicate minerals analysed include illite/smectite (I/S), phengite, muscovite, brammallite, paragonite, margarite and glauconite. Textural evolution primarily is towards larger, more defect-free grains with compositions that approach those of their respective end-members. The smectite-to-illite transformation reduced the amounts of the exchange components SiK?1Al?1, MgSiAl?2, and Fe3+Al?1. These trends continue to a lesser degree in the anchizone and epizone. Correlations between the proportion of smectite in I/S and the composition of I/S indicate that smectite layers may contain a high layer charge. Illite in I/S bears a compositional resemblance to macrocrystalline phengite in some samples, but is different in others. Paragonite first appears in the upper diagenetic zone or lower anchizone as an interlayer-deficient brammallite, and it may be mixed with muscovite on the nanometre scale. Owing to the small calculated structure factor for paragonite-muscovite superstructures, conventional X-ray powder diffraction cannot distinguish between mixed-layer structures and a homogeneous compositionally intermediate solid solutions. However, indirect TEM evidence shows that irregularly shaped domains of Na- and K-rich mica exist below 10 nm. Subsequent coarsening of domains at higher grades produced discrete paragonite grains at the margins of muscovite crystals or in laths parallel to the basal plane of the host muscovite. Margarite appears in the epizone and follows a textural evolution similar to paragonite in that mixtures of margarite, paragonite, and muscovite may initially occur on the nanometre scale. However, no evidence of interlayer-poor margarite has been found.  相似文献   

7.
FREY  MARTIN 《Journal of Petrology》1978,19(1):95-135
The unmetamorphosed equivalents of the regionally metamorphosedclays and marls that make up the Alpine Liassic black shaleformation consist of illite, irregular mixed-layer illite/montmorillonite,chlorite, kaolinite, quartz, calcite, and dolomite, with accessoryfeldspars and organic material. At higher grade, in the anchizonalslates, pyrophyllite is present and is thought to have formedat the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovitepresumably formed from the mixed-layer illite/montmorillonite.Anchimetamorphic illite is poorer in Fe and Mg than at the diageneticstage, having lost these elements during the formation of chlorite.Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appearby the reactions pyrophyllite + chlorite = chloritoid + quartz+ H2O and pyrophyllite + calcite ± paragonite = margarite+ quartz + H2O + CO2, respectively. At the epi-mesozone transition,paragonite and chloritoid seem to become incompatible in thepresence of carbonates and yield the following breakdown products:plagioclase, margarite, clinozoisite (and minor zoisite), andbiotite. The maximum distribution of margarite is at the epizone-mesozoneboundary; at higher metamorphic grade margarite is consumedby a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi-and epizone canbe treated in the two subsystems MgO (or FeO)-Na2O–CaO–Al2O3–(KAl3O5–SiO2–H2O–CO2).Chemographic analyses show that the variance of assemblagesdecreases with increasing metamorphic grade. Physical conditions are estimated from calibrated mineral reactionsand other petrographic data. The composition of the fluid phasewas low in XCO2 throughout the metamorphic profile, whereasXCH4 was very high, particularly in the anchizone where aH2Owas probably as low as 0.2. P-T conditions along the metamorphicprofile are 1–2 kb/200–300 °C in the anchizone(Glarus Alps), and 5 kb/500–550 °C at the epi-mesozonetransition (Lukmanier area). Calculated geothermal gradientsdecrease from 50 °C/km in the anchimetamorphic Glarus Alpsto 30 °C/km at the epi-mesozone transition of the Lukmanierarea.  相似文献   

8.
The assemblages phengite-paragonite, phengite-margarite and phengite-paragonitemargarite are very common in metasediments of a N-S profile in the middle sector of the Hohe Tauern. The Si4+-content of phengite shows no regular change with increasing temperature from north to south along the profile. The variations in the d 002 basal spacings of phengite coexisting with paragonite are not only dependent on the Na+ content of phengite but also on the Mg2++Fe2+ content of the micas. Neither the sodium content in phengite nor the potassium content in paragonite shows any dependence on temperature. Chemical analyses of coexisting phengite, paragonite and margarite give the extent of the three-phase-region which is characterized by a small amount of margarite in paragonite (4 Mol%), by a large quantity of Na+ in margarite (28 Mol% paragonite), and limited miscibility between phengite and paragonite.  相似文献   

9.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

10.
 Coexisting muscovite and paragonite have been observed in an eclogite from the Sesia–Lanzo Zone (Western Alps, Italy). The P-T conditions of this eclogite reached 570–650 °C and 19–21 kbar and the rocks show several stages of mineral growth during their retrograde path, ranging from the subsequent lower-P eclogite facies to the blueschist facies and then the greenschist facies. Muscovite and paragonite are very common in these rocks and show two texturally different occurrences indicating equilibrium and non-equilibrium states between them. In one mode of occurrence they coexist in equilibrium in the lower-P eclogite facies. In the same rock muscovite ± albite also replaced paragonite during a greenschist-facies overprint, as evidenced by unique across – (001) layer boundaries. The chemical compositions of the lower-P eclogite-facies micas plot astride the muscovite – paragonite solvus, whereas the compositions of the greenschist-facies micas lie outside the solvus and indicate disequilibrium. The TEM observations of the textural relations of the greenschist-facies micas imply structural coherency between paragonite and muscovite along the layers, but there is a sharp discontinuity in the composition of the octahedral and tetrahedral sheets across the phase boundary. We propose that muscovite formed through a dissolution and recrystallization process, since no gradual variations toward the muscovite – paragonite interfaces occur and no intermediate, homogeneous Na-K phase has been observed. Because a solid-state diffusion mechanism is highly unlikely at these low temperatures (300–500 °C), especially with respect to octahedral and tetrahedral sites, it is assumed that H2O plays an important role in this process. The across-layer boundaries are inferred to be characteristic of such non-equilibrium replacement processes. The characterization of these intergrowths is crucial to avoiding erroneous assumptions regarding composition and therefore about the state of equilibrium between both micas, which in turn may lead to misinterpretations of thermometric results. Received: 3 February 1999 / Accepted: 19 October 1999  相似文献   

11.
An experimental study of Ca-(Fe,Mg) interdiffusion in silicate garnets   总被引:1,自引:0,他引:1  
Ca-(Fe,Mg) interdiffusion experiments between natural single crystals of grossular (Ca2.74Mg0.15 Fe0.23Al1.76Cr0.04Si3.05O12) and almandine (Ca0.21Mg0.40 Fe2.23Mn0.13Al2.00Cr0.08Si2.99O12 or Ca0.43Mg0.36Fe2.11 Al1.95Si3.04O12), were undertaken at 900–1100 °C and 30 kbar, and pressures of 15.0–32.5 kbar at 1000 °C. Samples were buffered by Fe/FeO in most cases. Diffusion profiles were determined by electron microprobe. Across the experimental couples the interdiffusion coefficients () were almost independent of composition. The diffusion rates in an unbuffered sample were significantly faster than in buffered samples. The temperature dependence of the (Ca-Fe,Mg) interdiffusion coefficients may be described by
at 30 kbar and 900–1100 °C. This activation energy is marginally higher than previous experimental studies involving Ca-free garnets; the interdiffusion coefficients are higher than previous studies for Fe-Mg and Fe-Mn exchange in garnet. The pressure dependence of (Ca-Fe,Mg) at 1000 °C yielded an activation volume of 11.2 cm3 mol−1, which is higher than previous results from studies involving garnet and olivine. Comparison with simulation studies suggests a vacancy mechanism for divalent ion migration in garnet, with extrinsic processes being dominant up to very high temperatures. Received: 15 December 1996 / Accepted: 3 November 1998  相似文献   

12.
Titanium in phengite: a geobarometer for high temperature eclogites   总被引:1,自引:1,他引:0  
Phengite chemistry has been investigated in experiments on a natural SiO2–TiO2-saturated greywacke and a natural SiO2–TiO2–Al2SiO5-saturated pelite, at 1.5–8.0 GPa and 800–1,050°C. High Ti-contents (0.3–3.7 wt %), Ti-enrichment with temperature, and a strong inverse correlation of Ti-content with pressure are the important features of both experimental series. The changes in composition with pressure result from the Tschermak substitution (Si + R2+ = AlIV + AlVI) coupled with the substitution: AlVI + Si = Ti + AlIV. The latter exchange is best described using the end-member Ti-phengite (KMgTi[Si3Al]O10(OH)2, TiP). In the rutile-quartz/coesite saturated experiments, the aluminoceladonite component increases with pressure while the muscovite, paragonite and Ti-phengite components decrease. A thermodynamic model combining data obtained in this and previous experimental studies are derived to use the equilibrium MgCel + Rt = TiP + Cs/Qz as a thermobarometer in felsic and basic rocks. Phengite, rutile and quartz/coesite are common phases in HT-(U)HP metamorphic rocks, and are often preserved from regression by entrapment in zircon or garnet, thus providing an opportunity to determine the TP conditions of crystallization of these rocks. Two applications on natural examples (Sulu belt and Kokchetav massif) are presented and discussed. This study demonstrates that Ti is a significant constituent of phengites that could have significant effects on phase relationships and melting rates with decreasing P or increasing T in the continental crust.  相似文献   

13.
The phase relations of divariant and trivariant assemblages involving combinations of phengite, chlorite, biotite, K-feldspar, quartz and H2O in the KFASH, KMASH and KFMASH systems were calculated using a single thermodynamic data set (Holland and Powell 1998). The stability fields of the various equilibria are represented in P-T projections by contouring sets of compositional isopleths for the Tschermak (Al2(Fe,Mg)−1Si−1) and FeMg−1 exchanges controlled by the coexisting phases. Five multivariant continuous equilibria, which occur in different regions of P-T-X space, are calibrated as thermobarometers in metamorphic rocks of pelitic to quartzofeldspathic composition. More subtle P-T information, relating to the trajectories (dT/dz) along which reacting rocks have been buried or exhumed, can be extracted from the continuous reactions by investigating the recorded compositional trends in the Al2(Fe,Mg)−1Si−1 and FeMg−1 solutions. Singularities in P-T space are associated with some of these reactions and may result in unusual mineral textures and compositional trends. A fluid-absent singularity has particular petrological significance because it marks the transition between hydration and dehydration along a single reaction with increasing pressure and temperature. This behaviour causes the sequence of reactions among these minerals observed during metamorphism to be critically dependent on the P-T trajectory. Thermobarometric calculations show good agreement with respect to experimental and field-based data for phengite compositions less than about 50 mol% celadonite (<∼3.5 Si p.f.u. phengite). Received: 15 November 1999 / Accepted: 3 April 2000  相似文献   

14.
 The equilibrium water content of cordierite has been measured for 31 samples synthesized at pressures of 1000 and 2000 bars and temperatures from 600 to 750° C using the cold-seal hydrothermal technique. Ten data points are presented for pure magnesian cordierite, 11 data points for intermediate iron/magnesium ratios from 0.25 to 0.65 and 10 data points for pure iron cordierite. By representing the contribution of H2O to the heat capacity of cordierite as steam at the same temperature and pressure, it is possible to calculate a standard enthalpy and entropy of reaction at 298.18° K and 1 bar for, (Mg,Fe)2Al4Si5O18+H2O ⇄ (Fe,Mg)2Al4Si5O18.H2O Combining the 31 new data points with 89 previously published experimental measurements gives: ΔH ° r =–37141±3520 J and ΔS °  r =–99.2±4 J/degree. This enthalpy of reaction is within experimental uncertainty of calorimetric data. The enthalpy and entropy of hydration derived separately for magnesian cordierite (–34400±3016 J, –96.5±3.4 J/degree) and iron cordierite (–39613±2475, –99.5±2.5 J/degree) cannot be distinguished within the present experimental uncertainty. The water content as a function of temperature, T(K), and water fugacity, f(bars), is given by n H2O=1/[1+1/(K ⋅ f H2O)] where the equilibrium constant for the hydration reaction as written above is, ln K=4466.4/T–11.906 with the standard state for H2O as the gas at 1 bar and T, and for cordierite components, the hydrous and anhydrous endmembers at P and T. Received: 2 August 1994/Accepted: 7 February 1996  相似文献   

15.
The Fe M 2,3-edge spectra of solid solutions of garnets (almandine-skiagite Fe3(Al1–xFex)2[SiO4]3 and andradite-skiagite (Fe1–xCax)3Fe2[SiO4]3), pyroxenes (acmite-hedenbergite (Ca1–xNax)(Fe2+ 1−xFe3+ x)Si2O6), and spinels (magnetite-hercynite Fe(Al1–xFex)2O4) have been measured using the technique of parallel electron energy-loss spectroscopy (EELS) conducted in a transmission electron microscope (TEM). The Fe M 2,3 electron energy-loss near-edge structures (ELNES) of the minerals exhibit a characteristic peak located at 4.2 eV and 2.2 eV for trivalent and divalent iron, respectively, prior to the main maximum at about 57 eV. The intensity and energy of the pre-edge feature varies depending on Fe3+/ΣFe. We demonstrate a new quantitative method to extract the ferrous/ferric ratio in minerals. A systematic relationship between Fe3+/ΣFe and the integral intensity ratio of the main maximum and the pre-edge peak of the Fe M 2,3 edge is observed. Since the partial cross sections of the Fe M 2,3 edges are some orders of magnitude higher than those of the Fe L 2,3 edges, the Fe M 2,3 edges are interesting for valence-specific imaging of Fe. The possibility of iron valence-specific imaging is illustrated by Fe M 2,3-ELNES investigations with high lateral resolution from a sample of ilmenite containing hematite exsolution lamellae that shows different edge shapes consistent with variations in the Fe3+/ΣFe ratio over distances on the order of 100 nm. Received: 14 April 1998 / Revised, accepted: 8 March 1999  相似文献   

16.
The formation of paragonite at the transition from the low-grade to the medium-grade matamorphism and its breakdown in the presence of quartz in the upper medium grade in common metapelites is investigated.The microprobe work on the white micas from the low and medium-grade rocks yields compositional differences in respect to the celadonite substitutions and the paragonite content. The low-grade white micas are phengites having Si[4] 6.25 to 6.44 and Altot 4.89 to 5.20. The paragonite component in solid solution in the phengites ranges from 11 to 17 mole %. In the transition from the low-grade to the medium-grade metamorphism, concomitant with the breakdown of chlorite, the phengites change to muscovites having Si[4] 6.07 to 6.16 and Altot 5.36 to 5.56. At the same time, the amount of paragonite in solid solution increases up to 22±2 mole % and paragonite makes its first appearance as a separate mineral. The increase of the percentage of paragonite in solid solution in the muscovites is due to the drastical modal decrease of muscovite in the course of the breakdown of chlorite. The formation of paragonite is readily explained by the muscovite-paragonite solvus. Paragonite forms thin lamellae (1–20 m) interlayered with muscovite lamellae (1–40 m). The average composition is Pg88.5Ms7Mar4.5. Paragonite occurs together with staurolite+biotite, kyanite+biotite, cordierite +biotite, and andalusite+biotite. In the presence of quartz, it breaks down in the lower part of the andalusite zone to andalusite and albite-rich plagioclase. At the same time, the amount of paragonite in solid solution in the muscovites decrease to 11–15 mole %. The basal spacings d(002) of the phengites and muscovites investigated show a clear dependence on the Na+ content and the celadonite substitutions.  相似文献   

17.
Multiphase solid inclusions in minerals formed at ultra-high-pressure (UHP) provide evidence for the presence of fluids during deep subduction. This study focuses on barian mica, which is a common phase in multiphase solid inclusions enclosed in garnet from mantle-derived UHP garnet peridotites in the Saxothuringian basement of the northern Bohemian Massif. The documented compositional variability and substitution trends provide constraints on crystallization medium of the barian mica and allow making inferences on its source. Barian mica in the multiphase solid inclusions belongs to trioctahedral micas and represents a solid solution of phlogopite KMg3(Si3Al)O10(OH)2, kinoshitalite BaMg3(Al2Si2)O10(OH)2 and ferrokinoshitalite BaFe3(Al2Si2)O10(OH)2. In addition to Ba (0.24–0.67 apfu), mica is significantly enriched in Mg (XMg ~ 0.85 to 0.95), Cr (0.03–0.43 apfu) and Cl (0.04–0.34 apfu). The substitution vector involving Ba in the I-site which describes the observed chemical variability can be expressed as BaFeIVAlClK?1Mg?1Si?1(OH)?1. A minor amount of Cr and VIAl enters octahedral sites following a substitution vector VI(Cr,Al)2VI(Mg,Fe)?3 towards chromphyllite and muscovite. As demonstrated by variable Ba and Cl contents positively correlating with Fe, barian mica composition is partly controlled by its crystal structure. Textural evidence shows that barian mica, together with other minerals in multiphase solid inclusions, crystallized from fluids trapped during garnet growth. The unusual chemical composition of mica reflects the mixing of two distinct sources: (1) an internal source, i.e. the host peridotite and its garnet, providing Mg, Fe, Al, Cr, and (2) an external source, represented by crustal-derived subduction-zone fluids supplying Ba, K and Cl. At UHP–UHT conditions recorded by the associated diamond-bearing metasediments (c. 1100 °C and 4.5 GPa) located above the second critical point in the pelitic system, the produced subduction-zone fluids transporting the elements into the overlying mantle wedge had a solute-rich composition with properties of a hydrous melt. The occurrence of barian mica with a specific chemistry in barium-poor mantle rocks demonstrates the importance of its thorough chemical characterization.  相似文献   

18.
Summary Ti-bearing phlogopite-biotite is dominant in Ugandan kamafugite-carbonatite effusives and their entrained alkali clinopyroxenite xenoliths. It occurs as xeno/phenocrysts, microphenocrysts and groundmass minerals and also as a major xenolith mineral. Xenocrystic micas in kamafugites and carbonatites are aluminous (> 12 wt% Al2O3), typically contain significant levels of Cr (up to 1.1 wt% Cr2O3), and are Ba-poor. Microphenocryst and groundmass micas in feldspathoidal rocks extend to Al-poor compositions, are depleted in Cr, and are generally enriched in Ba. In general, xenocrystic micas occupy the Al2O3 and TiO2 compositional field of the xenolith mica, and on the basis of Mg#, and high P, T experimental evidence they probably crystallised at mantle pressures. Mica xenocryst Cr contents range from those in Cr-poor megacryst and MARID phlogopite to higher values found in primary and metasomatic phlogopites in kimberlite-hosted peridotite xenoliths. Such Cr contents in Ugandan mica xenocrysts are considered consistent with derivation from carbonate-bearing phlogopite wehrlite and phlogopite-clinopyroxenite mantle. Olivine melilitite xenocryst micas are distinguished by higher Mg# and Cr content than mica in clinopyroxenite xenoliths and mica in Katwe-Kikorongo mixed melilitite-carbonatite tephra. Higher Al2O3 distinguishes Fort Portal carbonatite xenocrysts and some contain high Cr. It is suggested that the genesis of Katwe-Kikorongo olivine melilitite and Fort Portal carbonatite involves a carbonate-bearing phlogopite wehrlite source while the source of the mixed carbonatite-melilitite rocks may be carbonate-bearing phlogopite clinopyroxenite. Received January 24, 2000; revised version accepted September 27, 2001  相似文献   

19.
 A synthesis technique is described which results in >99% pure NH4-phlogopite (NH4) (Mg3) [AlSi3O10] (OH)2 and its deuterium analogue ND4-phlogopite (ND4) (Mg3) [AlSi3O10] (OD)2. Both phases are characterised using both IR spectroscopy at 298 and 77 K as well as Rietveld refinement of their X-ray powder diffraction pattern. Both NH4 + and ND4 + are found to occupy the interlayer site in the phlogopite structure. Absorption bands in the IR caused by either NH4 + or ND4 + can be explained to a good approximation using Td symmetry as a basis. Rietveld refinement indicates that either phlogopite synthesis contains several mica polytypes. The principle polytype is the one-layer monoclinic polytype (1M), which possesses the space group symmetry C2/m. The next most common polytype is the two-layer polytype (2M 1 ) with space group symmetry C2/c. Minor amounts of the trigonal polytype 3T with the space group symmetry P3112 were found only in the synthesis run for the ND4-phlogopite. Electron microprobe analyses indicate that NH4-phlogopite deviates from the ideal phlogopite composition with respect to variable Si/Al and Mg/Al on both the tetrahedral and octahedral sites, respectively, due to the Tschermaks substitution VIMg2++IVSi4+VIAl3++IVAl3+ and with respect to vacancies on the interlayer site due to the exchange vector XII(NH4)++IVAl3+XII□+IVSi4+. Received: 30 August 1999 / Accepted: 2 October 2000  相似文献   

20.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号