首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phase relations of basalts from the Kerguelen large igneous province have been investigated experimentally to understand the effect of temperature, fO2, and fugacity of volatiles (e.g., H2O and CO2) on the differentiation path of LIP basalts. The starting rock samples were a tholeiitic basalt from the Northern Kerguelen Plateau (ODP Leg 183 Site 1140) and mildly alkalic basalt evolved from the Kerguelen Archipelago (Mt. Crozier on the Courbet Peninsula), representing different differentiation stages of basalts related to the Kerguelen mantle plume. The influence of temperature, water and oxygen fugacity on phase stability and composition was investigated at 500 MPa and all experiments were fluid-saturated. Crystallization experiments were performed at temperatures between 900 and 1,160°C under oxidizing (log fO2 ~ ΔQFM + 4) and reducing conditions (log fO2 ~ QFM) in an internally heated gas-pressure vessel equipped with a rapid quench device and a Pt-Membrane for monitoring the fH2. In all experiments, a significant influence of the fO2 on the composition and stability of the Mg/Fe-bearing mineral phases could be observed. Under reducing conditions, the residual melts follow a tholeiitic differentiation trend. In contrast, melts have high Mg# [Mg2+/(Mg2+ + Fe2+)] and follow a calk-alkalic differentiation trend at oxidizing conditions. The comparison of the natural phenocryst assemblages with the experimental products allows us to constrain the differentiation and pre-eruptive conditions of these magmas. The pre-eruptive temperature of the alkalic basalt was about 950–1,050°C. The water content of the melt was below 2.5 wt% H2O and strongly oxidizing conditions (log fO2 ~ ΔQFM + 2) were prevailing in the magma chamber prior to eruption. The temperature of the tholeiitic melt was above 1,060°C, with a water content below 2 wt% H2O and a log fO2 ~ ΔQFM + 1. Early fractionation of clinopyroxene is a crucial step resulting in the generation of silica-poor and alkali-rich residual melts (e.g., alkali basalt). The enrichment of alkalis in residual melts is enhanced at high fO2 and low aH2O.  相似文献   

2.
The petrology of five phenocryst-poor (2–5%) andesites and dacites, all of which were erupted from different short-lived, monogenetic vents, is compared to that of phenocryst-rich (10–25%) andesites erupted from the adjacent stratovolcano, Volcán Tequila, in the Mexican arc. Despite differences in phenocryst abundances, these magmas have comparable phase assemblages (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), and similarly wide variations in phenocryst compositions, coupled to complex zoning patterns. For the phenocryst-poor lavas, equilibrium pairs of two Fe–Ti oxides lead to a narrow range of calculated temperatures for each sample that range from 934 (±24) to 1,073 (±6)°C and oxygen fugacities that range from +0.1 to +0.7 log units relative to the Ni–NiO buffer. Application of the plagioclase-liquid hygrometer to each sample at these calculated temperatures leads to maximum melt water concentrations of 4.6–3.1 wt% during plagioclase crystallization, indicating that the magmas were fluid saturated at depths ≥6.4–4.5 km. There is a wide, continuous range in the composition of plagioclase (≤44 mol% An) and orthopyroxene (≤16% Mg#) phenocrysts in each sample, which is consistent with a loss of dissolved water (≤2.8 wt%) from the melt phase during degassing as the magmas ascended rapidly to the surface. Evidence is presented that shows the effect of dissolved water is to reduce the activity of MgO relative to FeO in the melt phase, which indicates that degassing will also affect the Mg# of pyroxene phenocrysts, with higher melt water concentrations favoring Fe-rich pyroxene. Both plagioclase and orthopyroxene commonly display diffusion-limited growth textures (e.g., skeletal and hopper crystals, large interior melt hollows, and swallow tails), which are consistent with large undercoolings produced by degassing-induced crystallization. Therefore, degassing is proposed as a possible cause for the phenocryst compositional diversity documented in the phenocryst-poor andesite and dacite lavas erupted from peripheral vents, including the coexistence of normally zoned plagioclase and reversely zoned orthopyroxene. Degassing-induced crystallization may also explain some of the phenocryst complexity in crystal-rich andesites erupted from large stratovolcanoes, including Volcán Tequila.  相似文献   

3.
Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian–Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66–0.73 at intermediate SiO2 (54–58 wt%) with low CaO (<8.8%), CaO/Al2O3 (<0.54), and relatively high Na2O (>3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock ‘melts’, consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (<2.7 wt%) and K2O (<1.1 wt%) at similar Mg# (0.66–0.70). Olivine phenocrysts in basalts have in general, higher CaO and Mn/Fe and lower Ni and Ni/Mg at Fo88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984–1,143°C and 4–7 wt% H2O. For primitive basalts they are 1,149–1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with hotter peridotite in the over-lying mantle wedge. The strongly calc-alkaline igneous series at Shiveluch Volcano is interpreted to result from the emplacement and evolution of primitive andesitic magmas similar to those that are present in nearby monogenetic cones of the Shisheisky Complex.  相似文献   

4.
We have measured the δ18O values of the major phenocrysts (olivine, clinopyroxene and plagioclase) present in lavas from Tristan da Cunha and Gough Island. These islands, which result from the same mantle plume, have enriched radiogenic isotope ratios and are, therefore, prime candidates for an oxygen isotope signature that is distinct from that of MORB. Consistent differences between the δ18O values of olivine, pyroxene and feldspar in the Gough lavas show that the phenocrysts in the mafic Gough Island lavas are in oxygen isotope equilibrium. The olivines in lavas with SiO2 <50 wt% have a mean δ18O value of 5.19‰, consistent with crystallization from a magma having the same oxygen isotope composition as MORB. Phenocrysts in all the Gough lavas show a systematic increase in δ18O value as silica content increases, which is consistent with closed-system fractional crystallization. The lack of enrichment in δ18O of the Gough magmas suggests that the mantle source contained <2% recycled sediment. In contrast, the Tristan lavas with SiO2 >48 wt% contain phenocrysts which have δ18O values that are systematically ∼0.3‰ lower than their counterparts from Gough. We suggest that the parental mafic Tristan magmas were contaminated by material from the volcanic edifice that acquired low δ18O values by interaction with water at high temperatures. The highly porphyritic SiO2-poor lavas show a negative correlation between olivine δ18O value and whole-rock silica content rather than the expected positive correlation. The minimum δ18O value occurs at an SiO2 content of about 45 wt%. Below 45 wt% SiO2, magmas evolved via a combination of assimilation, fractionational crystallization and crystal accumulation; above 45 wt% SiO2, magmas appeared to have evolved via closed-system fractional crystallization. Received: 23 November 1998 / Accepted: 27 September 1999  相似文献   

5.
In order to (1) explain the worldwide association between epithermal gold-copper-molybdenum deposits and arc magmas and (2) test the hypothesis that adakitic magmas would be Au-specialized, we have determined the solubility of Au at 4 kbar and 1000 °C for three intermediate magmas (two adakites and one calc-alkaline composition) from the Philippines. The experiments were performed over a fO2 range corresponding to reducing (∼NNO−1), moderately oxidizing (∼NNO+1.5) and strongly oxidizing (∼NNO+3) conditions as measured by solid Ni-Pd-O sensors. They were carried out in gold containers, the latter serving also as the source of gold, in presence of variable amounts of H2O and, in a few additional experiments, of S. Concentrations of Au in glasses were determined by LA-ICPMS. Gold solubility in melt is very low (30-240 ppb) but increases with fO2 in a way consistent with the dissolution of gold as both Au1+ and Au3+ species. In the S-bearing experiments performed at ∼NNO−1, gold solubility reaches much higher values, from ∼1200 to 4300 ppb, and seems to correlate with melt S content. No systematic difference in gold solubility is observed between the adakitic and the non-adakitic compositions investigated. Oxygen fugacity and the sulfur concentration in melt are the main parameters controlling the incorporation and concentration of gold in magmas. Certain adakitic and non-adakitic magmas have high fO2 and magmatic S concentrations favorable to the incorporation and transport of gold. Therefore, the cause of a particular association between some arc magmas and Au-Cu-Mo deposits needs to be searched in the origin of those specialized magmas by involvement of Au- and S-rich protoliths. The subducted slab, which contains metal-rich massive sulfides, may constitute a potentially favorable protolith for the genesis of magmas specialized with respect to gold.  相似文献   

6.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   

7.
Near-liquidus crystallization experiments have been carried out on two basalts (12.5 and 7.8 wt% MgO) from Soufriere, St Vincent (Lesser Antilles arc) to document the early stages of differentiation in calc-alkaline magmas. The water-undersaturated experiments were performed mostly at 4 kbar, with 1.6 to 7.7 wt% H2O in the melt, and under oxidizing conditions (ΔNNO = −0.8 to +2.4). A few 10 kbar experiments were also performed. Early differentiation of primitive, hydrous, high-magnesia basalts (HMB) is controlled by ol + cpx + sp fractionation. Residual melts of typical high-alumina basalt (HAB) composition are obtained after 30–40% crystallization. The role of H2O in depressing plagioclase crystallization leads to a direct relation between the Al2O3 content of the residual melt and its H2O concentration, calibrated as a geohygrometer. The most primitive phenocryst assemblage in the Soufriere suite (Fo89.6 olivine, Mg-, Al- and Ti-rich clinopyroxene, Cr–Al spinel) crystallized from near-primary (Mg# = 73.5), hydrous (∼5 wt% H2O) and very oxidized (ΔNNO = +1.5–2.0) HMB liquids at middle crustal pressures and temperatures from ∼1,160 to ∼1,060°C. Hornblende played no role in the early petrogenetic evolution. Derivative HAB melts may contain up to 7–8 wt% dissolved H2O. Primitive basaltic liquids at Soufriere, St Vincent, have a wide range of H2O concentrations (2–5 wt%).  相似文献   

8.
 Complete chemical analyses, including ferric and ferrous iron, H2O contents and δD values for 16 phlogopite and biotite and 2 hornblende separates are presented. Samples were obtained from volcanic rocks from four localities: (1) phlogopite phenocrysts from minette lavas from the western Mexico continental arc, (2) biotite and hornblende phenocrysts from andesite lavas from Mono Basin, California, (3) phlogopite and biotite from clinopyroxenite nodules entrained in potassic lavas from the East African Rift, Uganda, and (4) phlogopite phenocrysts from a wyomingite lava in the Leucite Hills, Wyoming. The Fe2O3 contents in the micas range from 0.8 to 10.5 wt%, corresponding to 0.09 to 1.15 Fe3+ per formula unit (pfu). Water contents vary from 1.6 to 3.0 wt%, corresponding to 1.58 to 3.04 OH pfu, significantly less than would be expected for a site fully occupied by hydroxyl. Cation- and anion-based normalization procedures provide accurate mineral formulae with respect to most cations and anions, but are unable to generate accurate estimates of Fe3+/FeT, and overestimate OH at the expense of O on the hydroxyl site. These inaccuracies are present despite acceptable adjusted totals and stoichiometric calculated site occupancies. The phlogopite and biotite phenocrysts in arc-related lavas from western Mexico and eastern California have the highest Fe3+/FeT ratios (56–87%), reflecting high magmatic oxygen fugacities (ΔNNO = +2 to +5), in contrast to those from Uganda (25–40%) and the Leucite Hills (23%). There is no correlation between the OH content and the Fe3+/FeT ratio in the micas. Values of KMg/Fe2+D (± 2σ errors) were calculated for three phlogopite-olivine pairs (0.12 ± 0.12, 0.26 ± 0.14, 0.09 ± 0.12), two biotite-hornblende pairs (0.73 ± 0.08 and 1.22 ± 0.10) and a single phlogopite-augite pair (1.15 ± 0.12). Values of KF/OHD for two biotite and hornblende pairs could not be determined without significant error because of the extremely low F contents (< 0.2 wt%) of the four phases. The δD values obtained in this study encompass a large range (−137 to −43‰). The phlogopite and biotite separates from Uganda have δD values of −70 to −49‰, which overlap those believed to represent “primary” mantle. There is a larger range in δD values (−137 to −43‰) for phlogopite phenocrysts from western Mexico minette lavas, although their range in δ18O values (5.2–6.2‰) is consistent with “normal” mantle. It is unlikely, therefore, that the variable δD values reflect heterogeneity in the mantle source region of the minette magmas. Nor can the extremely low δD values reflect degassing of H2 or H2O since almost 100% loss of dissolved water in the magma is required, an unrealistic scenario given the stability of the hydrous phenocrysts. The very low δD values of the Mascota minette phlogopites require that the hydrogen be introduced from an external source (e.g., meteoric water). Whatever the process responsible for the observed hydrogen isotope composition, it had no effect on the δ18O value, f O 2, a H 2O or bulk composition of the host magmas. Received: 5 January 1995 / Accepted: 19 March 1996  相似文献   

9.
The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc)   总被引:1,自引:1,他引:0  
The >60 km3 rhyolitic Kos Plateau Tuff provides an exceptional probe into the behavior of volatile components in highly evolved arc magmas: it is crystal-rich (30–40 vol% crystals), was rapidly quenched by the explosive eruptive process, and contains abundant homogeneous melt inclusions in large quartz crystals. Several methods for measuring major, trace and volatile element concentrations (SIMS, FTIR, Raman spectroscopy, electron microprobe, LA–ICPMS) were applied to these melt inclusions. We found a ~2 wt% range of H2O contents (4.5–6.5 wt% H2O, measured independently by SIMS, FTIR, and Raman spectroscopy) and relatively low CO2 concentrations (15–140 ppm measured by FTIR, with most analyses <100 ppm). No obvious correlations between H2O, CO2, major and trace elements are observed. These observations require a complex, protracted magma evolution in the upper crust that included: (1) vapor-saturated crystallization in a chamber located between 1.5 and 2.5 kb pressure, (2) closed-system degassing (with up to 10 vol% exsolved gas) as melts percolated upwards through a vertically extensive mush zone (2–4 km thick), and (3) periodic gas fluxing from subjacent, more mafic and more CO2-rich magma, which is preserved as andesite bands in pumices. These processes can account for the range of observed H2O and CO2 values and the lack of correlation between volatiles and trace elements in the melt inclusions.  相似文献   

10.
The following article presents constraints of the stability of Mg-rich (Mg/(Mg + Fe2+) > 0.5) calcic amphibole in both calc-alkaline and alkaline magmas, testing of previous thermobarometers, and formulation of new empirical equations that take into consideration a large amount of literature data (e.g. more than one thousand amphibole compositions among experimental and natural crystals). Particular care has been taken in choosing a large number of natural amphiboles and selecting quality experimental data from literature. The final database of experimental data, composed of 61 amphiboles synthesized in the ranges of 800–1,130°C and 130–2,200 MPa, indicates that amphibole crystallization occurs in a horn-like PT stability field limited by two increasing curves (i.e. the thermal stability and an upper limit), which should start to bend back to higher pressures. Among calcic amphiboles, magnesiohornblendes and tschermakitic pargasites are only found in equilibrium with calc-alkaline melts and crystallize at relatively shallow conditions (P up to ~1 GPa). Kaersutite and pargasite are species almost exclusively found in alkaline igneous products, while magnesiohastingsite is equally distributed in calc-alkaline and alkaline rocks. The reliability of previous amphibole applications was checked using the selected experimental database. The results of this testing indicate that none of the previous thermobarometers can be successfully used to estimate the P, T and fO2 in a wide range of amphibole crystallization conditions. Multivariate least-square analyses of experimental amphibole compositions and physico-chemical parameters allowed us to achieve a new thermobarometric model that gives reasonably low uncertainties (T ± 23.5°C, P ± 11.5%, H2Omelt ± 0.78wt%) for calc-alkaline and alkaline magmas in a wide range of PT conditions (up to 1,130°C and 2,200 MPa) and ∆NNO values (±0.37 log units) up to 500 MPa. The AK-[4]Al relation in amphibole can be readily used to distinguish crystals of calc-alkaline liquids from those of alkaline magmas. In addition, several chemometric equations allowing to estimate the anhydrous composition of the melts in equilibrium with amphiboles of calc-alkaline magmas were derived.  相似文献   

11.
The 1995 eruption of Fogo (Cape Verde Islands) differed from previous eruptions by the occurrence of evolved lavas, the SW-orientation of vents, and pre-eruptive seismicity between Fogo and the adjacent (~20 km) island of Brava. We have conducted a thermobarometric and chemical study of this eruption in order to reconstruct its magma plumbing system and to test for possible connections to Brava. The bimodal eruption produced basanites (5.2–6.7 wt% MgO) and phonotephrites (2.4–2.8 wt% MgO) that are related by fractional crystallization. Clinopyroxene-melt-barometry of phenocrysts yields pressure ranges of 460–680 MPa for the basanites and 460–520 MPa for the phonotephrites. Microthermometry of CO2-dominated fluid inclusions in olivine and clinopyroxene phenocrysts yields systematically lower pressure ranges of 200–310 MPa for basanites and 270–470 MPa for phonotephrites. The combined data indicate pre-eruptive storage of the 1995 magmas within the lithospheric mantle between 16 and 24 km depth. During eruption, the ascending magmas stalled temporarily at 8–11 km depth, within the lower crust, before they ascended to the surface in a few hours as indicated by zonations of olivine phenocrysts. Our data provide no evidence for magma storage at shallow levels (<200 MPa) or lateral magma movements beneath the Fogo-Brava platform. Sr–Nd–Pb isotope ratios of samples from Brava differ significantly from those of the 1995 and older Fogo lavas, which rules out contamination of the 1995 magmas by Brava material and indicates different mantle sources and magma plumbing systems for both islands.  相似文献   

12.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

13.
Melting experiments have been performed at 1 bar (anhydrous) and 1- and 2-kbar H2O-saturated conditions to study the effect of water on the differentiation of a basaltic andesite. The starting material was a mafic pumice from the compositionally zoned tuff deposited during the ~75 ka caldera-forming eruption of Newberry Volcano, a rear-arc volcanic center in the central Oregon Cascades. Pumices in the tuff of Newberry caldera (TNC) span a continuous silica range from 53 to 74 wt% and feature an unusually high-Na2O content of 6.5 wt% at 67 wt% SiO2. This wide range of magmatic compositions erupted in a single event makes the TNC an excellent natural laboratory in which to study the conditions of magmatic differentiation. Our experimental results and mineral–melt hygrometers/thermometers yield similar estimates of pre-eruptive H2O contents and temperatures of the TNC liquids. The most primitive (mafic) basaltic andesites record a pre-eruptive H2O content of 1.5 wt% and a liquidus temperature of 1,060–1,070 °C at upper crustal pressure. This modest H2O content produces a distinctive fractionation trend that is much more enriched in Na, Fe, and Ti than the calc-alkaline trend typical of wetter arc magmas, but slightly less enriched in Fe and Ti than the tholeiitic trend of dry magmas. Modest H2O contents might be expected at Newberry Volcano given its location in the Cascade rear arc, and the same fractionation trend is also observed in the rim andesites of the rear-arc Medicine Lake volcano in the southern Cascades. However, the Na–Fe–Ti enrichment characteristic of modest H2O (1–2 wt%) is also observed to the west of Newberry in magmas erupted from the arc axis, such as the Shevlin Park Tuff and several lava flows from the Three Sisters. This shows that modest-H2O magmas are being generated directly beneath the arc axis as well as in the rear arc. Because liquid lines of descent are particularly sensitive to water content in the range of 0–3 wt% H2O, they provide a quantitative and reliable tool for precisely determining pre-eruptive H2O content using major-element data from pumices or lava flows. Coupled enrichment in Na, Fe, and Ti relative to the calc-alkaline trend is a general feature of fractional crystallization in the presence of modest amounts of H2O, which may be used to look for “damp” fractionation sequences elsewhere.  相似文献   

14.
Detrital spinel is a widespread heavy mineral in sandstones from the Maastrichtian–Middle Eocene sedimentary basins in the SE Alps. Chemistry of detrital spinels from the Claut/Clauzetto and Julian Basins (N Italy and NW Slovenia) is used to constrain petrological and geochemical affinities and tectonic provenance of the source rocks. In addition, we have analysed melt inclusion compositions in the detrital volcanic spinels to better constrain the nature of their parental magmas. This is the first study of melt inclusions in detrital spinels. Two principal compositional groups of detrital spinels are recognised based on their TiO2 and Fe2+/Fe3+; one derived from peridotites, the other from basaltic volcanics. Peridotitic spinels are more abundant and have TiO2 < 0.2 wt% and high Cr/Cr + Al (40–90), characteristic of suprasubduction zone harzburgites. Significant chemical variations among volcanic spinels (TiO2 up to 3 wt%, Al2O3 12–44 wt%) suggest multiple sources, with geochemically distinct characteristics, including MORB-type and backarc basin basalts, subduction-related magmas and tholeiites produced during early continental rifting. Compositions of homogenised melt inclusions in spinels with TiO2 > 0.2 better distinguish the differences between the compositions of their host spinels and help to further clarify the geodynamic provenance of extrusive source rocks. Several compositional groups of melt inclusions have been recognised and represent diverse magmatism of marginal basins, including MORB- and subduction-related geochemical types, as well as magmas characteristic of early continental rifting. These results, combined with the data on regional ophiolitic complexes and tectonic reconstructions favour the Internal Dinarides of Yugoslavia as a possible source area for the SE Alps sediments. Received: 20 January 2000 / Accepted: 25 April 2000  相似文献   

15.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

16.
Monticellite is a common magmatic mineral in the groundmass of kimberlites. A new oxygen barometer for kimberlite magmas is calibrated based on the Fe content of monticellite, CaMgSiO4, in equilibrium with kimberlite liquids in experiments at 100 kPa from 1,230 to 1,350°C and at logfO2 from NNO-4.1 to NNO+5.3 (where NNO is the nickel–nickel oxide buffer). The XFeMtc/XFeliq was found to decrease with increasing fO2, consistent with only Fe2+ entering the monticellite structure. Although the XFe-in-monticellite varies with temperature and composition, these dependencies are small compared to that with fO2. The experimental data were fitted by weighted least square regression to the following relationship: \Updelta \textNNO = \frac{ log[ 0.858( ±0.021)\fracX\textFe\textLiq X\textFe\textMtc ] - 0.139( ±0.022) }0.193( ±0.004) \Updelta {\text{NNO}} = \frac{{\left\{ {\log \left[ {0.858( \pm 0.021)\frac{{X_{\text{Fe}}^{\text{Liq}} }}{{X_{\text{Fe}}^{\text{Mtc}} }}} \right] - 0.139( \pm 0.022)} \right\}}}{0.193( \pm 0.004)} where ΔNNO is the fO2 relative to that of the Nickel-bunsenite (NNO) buffer and XFeliq/XFeMtc is the ratio of mole fraction of Fe in liquid and Fe-in-monticellite (uncertainties at 2σ). The application of this oxygen barometer to natural kimberlites from both the literature and our own investigations, assuming the bulk rock FeO is that of their liquid FeO, revealed a range in fO2 from NNO-3.5 to NNO+1.7. A range of Mg/(Mg + Fe2+) (Mg#) for kimberlite melts of 0.46–0.88 was derived from the application of the experimentally determined monticellite-liquid Kd Fe2+–Mg to natural monticellites. The range in Mg# is broader and less ultramafic than previous estimates of kimberlites, suggesting an evolution under a wide range of petrologic conditions.  相似文献   

17.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

18.
Uralian-Alaskan-type mafic–ultramafic complexes are recognized as a distinct class of intrusions regarding lithologic assemblage, mineral chemistry and petrogenetic setting. In the present study, we discuss new data on the distribution of major elements in minerals of the spinel group in rocks from Uralian-Alaskan-type complexes in the Ural Mountains, Russia. Cr-rich spinel (Cr2O3 = 20–53 wt%) in dunite with interstitial clinopyroxene and in wehrlite cumulates indicate that it reacted with interstitial liquid resulting in the progressive substitution of Al2O2 and Cr2O3 by Fe2O3 and TiO2. A distinct change in the spinel chemistry in dunite (Cr2O3 = 47–53 wt%), towards Al2O3- and Cr2O3-poor but Fe2O3-rich compositions monitors the onset of clinopyroxene fractionation in wehrlite (Cr2O3 = 15–35 wt%, Al2O3 = 1–8 wt%, Fe2O3 = 25–55 wt%). In more fractionated mafic rocks, the calculated initial composition of exsolved spinel traces the sustained crystallization of clinopyroxene by decreasing Cr2O3 and increasing FeO, Fe2O3 and fO2. Finally, the initiation of feldspar crystallization buffers the Al2O3 content in most of the spinels in mafic rocks at very low Cr2O3 contents (<5 wt%). The fractionation path all along and the reaction with interstitial liquid are accompanied by increasing Fe2O3 contents in the spinel. This likely is caused by a significant increase in the oxygen fugacity, which suggests closed system fractionation processes. Spinel with Cr2O3 < 27 wt% is exsolved into a Fe2O3-rich and an Al2O3-rich phase forming a variety of textures. Remarkably, exsolved spinel in different lithologies from complexes 200 km apart follows one distinct solvus line defining a temperature of ca. 600°C. This indicates that the parental magmas were emplaced and eventually cooled at similar levels in the lithosphere, likely near the crust–mantle boundary. Eventually, these 600°C hot bodies were rapidly transported into colder regions of the upper crust during a regional tectonic event, probably during the major active phase of the Main Uralian Fault.  相似文献   

19.
Ultrasonic longitudinal acoustic velocities in oxidized silicate liquids indicate that the pressure derivative of the partial-molar volume of Fe2O3 is the same in iron-rich alkali-, alkaline earth- and natural silicate melt compositions at 1 bar. The dV/dP for multicomponent silicate liquids can be expressed as a linear combination of partial-molar constants plus a positive excess term for Na2O−Al2O3 mixing. Partial-molar properties for FeO and Fe2O3 components allow extension of the empirical expression of Sack et al. (1980) to permit the calculation of Fe-redox equilibrium in a natural silicate liquid as a function of composition, temperature, fo2 and pressure; a more formal thermodynamic expression is presented in the Appendix. The predicted equilibrium fo2 of natural silicate melts, of fixed oxygen content, closely parallels that defined by the metastable assemblage fayalite+magnetite+β-quartz (FMQ), in pressure-temperature space. A silicate melt initially equilibrated at 3 GPa and FMQ, will remain within approximately 0.5 log10 units of FMQ during its closed-system ascent. Thus, for magmas closed to oxygen, iron-redox equilibrium in crystal-poor pristine glassy lavas represents an excellent probe of the relative oxidation state of their source regions.  相似文献   

20.
 Pleistocene-Holocene volcanism in the Jalisco block of western Mexico is confined to two conspicuous grabens, where potassic eruptives range from absarokites (48–52% SiO2) and minettes (49–54% SiO2) through basaltic andesites (53–57% SiO2), the most voluminous type, to andesites and their lamprophyric equivalent spessartite (58–62% SiO2); there are no contemporary rhyolitic rocks. This suite has high concentrations of Mg, Cr (<550 ppm) and Ni (<450 ppm) accompanied by large concentrations of K, P, Ba (<4000 ppm) and Sr (<5000 ppm) and elements such as LREE and Zr (<600 ppm). No combination of crystal fractionation and/or crustal contamination can reproduce the compositional range of these magmas, which nevertheless are believed to be genetically related because of their proximity in time and space. Hydrous minerals in the lamprophyres and the typical absence of plagioclase phenocrysts in both basaltic andesites and andesites reflect the relatively high concentrations of water in the magmas, which suppressed the crystallisation of feldspar. Experimental verification of the minimal amounts of water required to reproduce the phenocryst assemblages in selected rocks range from 3.5 to 6%. During ascent in a volcanic conduit, andesitic magma may lose water and consequently precipitate plagioclase, or it may ascend more rapidly, retaining more of its initial water, which stabilises phenocrysts of hornblende at the expense of plagioclase. Our estimates of water concentrations, which are consistent with the various low pressure phenocryst assemblages, will be minimal for the magmas in their source regions, and the process of magmatic dewatering on ascent may be typical in well established volcanic conduits. In accord with the compositions of phenocrystic olivine in the basaltic andesites and the minettes, the values of FeO and Fe2O3 of the bulk lavas and scoriae are demonstrably pristine. As a consequence, there are two characteristic features of the Mascota suite: the high range of relative oxygen fugacities (ΔNNO=1–5) and the high Mg# (MgO/MgO+FeO) that ranges from 0.70 to 0.91 (with only one andesite as low as 0.66). From the evidence of phlogopite phenocrysts, a partial melt involving phlogopite would have a higher Mg# than one from olivine (Fo90) and pyroxene alone. As the Mascota series shows a correlation between K2O and Mg#, we conclude that it was generated by partial fusion of the mantle wedge, with a variable contribution of phlogopite and apatite from veins throughout the lherzolitic assemblage. In conformity with an origin by varying increments of partial fusion of a phlogopite-bearing mantle, all incompatible elements vary linearly with Ti (or K) as if phlogopite (+apatite) in the source dominated their contribution to the partial melts. Fluids from dehydration of the subducting slab presumably deposit hydrous and other minerals in veins in the mantle wedge and also increase its redox state. As the Mascota volcanism occurs in grabens closer to the trench than the main andesite arc, it is concluded that the eruption of these small volumes of hydrous magmas require the tectonically favored ascent paths offered by the extensional grabens to reach the surface from their mantle sources. Received: 24 January 1995 / Accepted: 21 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号