首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Kap Edvard Holm Layered Series forms part of the East GreenlandTertiary Province, and was emplaced at shallow crustal level(at depths corresponding to a pressure of 1–2 kbar) duringcontinental break-up. It consists of two suites: a gabbro suitecomprising olivine and oxide gabbros, leucocratic olivine gabbrosand anorthosites, and a suite of wehrlites that formed fromthe intrusion of the gabbros during their solidification bya hydrous, high-MgO magma. Ion microprobe analyses of clinopyroxenereveal chemical contrasts between the parental melt of the wehrlitesuite and that of the gabbro suite. Thin sills (1–2 mthick) of the wehrlite suite, however, have clinopyroxene compositionssimilar to the gabbro suite, and were formed by interactionwith interstitial melts from the host layered gabbros. All evolvedmembers of the gabbro suite have elevated Nd, Zr and Sr concentrationsand Nd/Yb ratios, relative to the melt parental to the gabbrosuite. These characteristics are attributed to establishmentof a magma chamber at depths corresponding to a pressure of10 kbar, where melts evolved before injection into the low-pressuremagma chamber. Anorthosites of the gabbro suite are believedto have crystallized from such injections. The melts becamesupersaturated in plagioclase by the pressure release that followedtransportation to the low-pressure magma chamber after initialfractionation at 10 kbar. The most evolved gabbros formed bysubsequent fractionation within the low-pressure magma chamber.Our results indicate that high-pressure fractionation may beimportant in generating some of the lithological variationsin layered intrusions. KEY WORDS: fractionation; ion microprobe; layered intrusions; rift processes; trace elements *Corresponding author.  相似文献   

2.
The Panzhihua gabbroic layered intrusion is associated withthe 260 Ma Emeishan Large Igneous Province in SW China. Thissill-like body hosts a giant Fe–Ti–V oxide depositwith 1333 million ton ore reserves, which makes China a majorproducer of these metals. The intrusion has a Marginal zoneof fine-grained hornblende-bearing gabbro and olivine gabbro,followed upward by Lower, Middle, and Upper zones. The Lowerand Middle zones consist of layered melanogabbro and gabbrocomposed of cumulate clinopyroxene, plagioclase, and olivine.These zones also contain magnetite layers. The Upper zone consistschiefly of leucogabbro composed of plagioclase and clinopyroxenewith minor olivine. Most rocks in the body show variable-scalerhythmic modal layering in which dark minerals, primarily clinopyroxene,dominate in the lower parts of each layer, and lighter minerals,primarily plagioclase, dominate in the upper parts. The oxideores occur as layers and lenses within the gabbros and are concentratedin the lower parts of the intrusion. Ore textures and associatedmineral assemblages indicate that the ore bodies formed by verylate-stage crystallization of V-rich titanomagnetite from animmiscible oxide liquid in a fluid-rich environment. The rocksof the Panzhihua intrusion become more evolved in chemistryupward and follow a tholeiitic differentiation trend with enrichmentin Fe, Ti, and V. They are enriched in light rare earth elementsrelative to heavy rare earth elements, and exhibit positiveNb, Ta, and Ti anomalies and negative Zr and Hf anomalies. Thesilicate rocks and oxide ores of the Panzhihua intrusion formedfrom highly evolved Fe–Ti–V-rich ferrobasaltic orferropicritic magmas. The textures of the ores and the abundanceof minor hydrous phases indicate that addition of fluids fromupper crustal wall-rocks induced the separation of the immiscibleoxide melts from which the Fe–Ti–V oxide ore bodiesin the lower part of the intrusion crystallized. KEY WORDS: magnetite; Fe–Ti-rich gabbro; layered intrusion; Panzhihua; SW China  相似文献   

3.
The Khopoli intrusion, exposed at the base of the Thakurvadi Formation of the Deccan Traps in the Western Ghats, India, is composed of olivine gabbro with 50–55 % modal olivine, 20–25 % plagioclase, 10–15 % clinopyroxene, 5–10 % low-Ca pyroxene, and <5 % Fe-Ti oxides. It represents a cumulate rock from which trapped interstitial liquid was almost completely expelled. The Khopoli olivine gabbros have high MgO (23.5–26.9 wt.%), Ni (733–883 ppm) and Cr (1,432–1,048 ppm), and low concentrations of incompatible elements including the rare earth elements (REE). The compositions of the most primitive cumulus olivine and clinopyroxene indicate that the parental magma of the Khopoli intrusion was an evolved basaltic melt (Mg# 49–58). Calculated parental melt compositions in equilibrium with clinopyroxene are moderately enriched in the light REE and show many similarities with Deccan tholeiitic basalts of the Bushe, Khandala and Thakurvadi Formations. Nd-Sr isotopic compositions of Khopoli olivine gabbros (εNdt?=??9.0 to ?12.7; 87Sr/86Sr?=?0.7088–0.7285) indicate crustal contamination. AFC modelling suggests that the Khopoli olivine gabbros were derived from a Thakurvadi or Khandala-like basaltic melt with variable degrees of crustal contamination. Unlike the commonly alkalic, pre- and post-volcanic intrusions known in the Deccan Traps, the Khopoli intrusion provides a window to the shallow subvolcanic architecture and magmatic processes associated with the main tholeiitic flood basalt sequence. Measured true density values of the Khopoli olivine gabbros are as high as 3.06 g/cm3, and such high-level olivine-rich intrusions in flood basalt provinces can also explain geophysical observations such as high gravity anomalies and high seismic velocity crustal horizons.  相似文献   

4.
望江山层状岩体位于扬子地块北缘新元古代汉南杂岩带中,岩体从底部到顶部由超镁铁质岩过渡为中性岩:底部主要由辉石岩和橄长岩组成;中部为辉长苏长岩和辉长岩;上部为辉长岩和闪长岩。研究以中部岩相带橄榄辉长苏长岩、辉长苏长岩和辉长岩为对象,通过主要矿物的主微量元素和全岩主微量元素的分析,查明望江山岩体来源于尖晶石二辉橄榄岩组成的大陆下岩石圈地幔,并且地幔源区受到了来自俯冲板片流体的交代,岩体中部带的母岩浆为拉斑玄武质岩浆。钛铁矿—磁铁矿矿物对成分计算表明,母岩浆在形成时具有较高氧逸度。通过单斜辉石压力计得到岩体的侵位深度约为12.9~18 km。对岩体母岩浆橄榄石分离结晶过程的模拟计算表明,中部带橄榄石为母岩浆经过~28%分离结晶的产物。此外,铂族元素(PGE)组成暗示岩体并未经历过大规模的硫化物熔离,可能与缺乏地壳物质混染有关。岩体中单斜辉石与岛弧环境堆晶岩中单斜辉石成分相似,不同于裂谷环境中堆晶单斜辉石的成分;同时,全岩Th/Yb和Nb/Yb比值也与岛弧玄武岩比值相似,因此矿物和全岩成分均说明望江山层状岩体应形成于岛弧环境。研究认为扬子北缘在新元古代长期的俯冲过程中,大洋板片断离导致软流圈上涌,提供热源使交代大陆下岩石圈地幔部分熔融形成具有岛弧特征的镁铁质岩浆,在局部伸展环境中上升侵位形成汉南杂岩带中镁铁—超镁铁质层状岩体。   相似文献   

5.
阿拉斯加型岩体的基本特征、成岩过程及成矿作用   总被引:2,自引:2,他引:0  
阿拉斯加型岩体是一类具有独特的岩性环带状结构的镁铁-超镁铁质侵入体,常呈链状分布于汇聚板块边缘。其形成时代跨度较大,从元古代到新生代均有分布,以中生代最为发育。大部分阿拉斯加型岩体规模较小,出露面积约12~14 km~2或更小,平面上呈近似同心环状结构,垂直剖面上呈管道状。岩体中心为纯橄岩,向外依次包括异剥橄榄岩、橄榄单斜辉石岩、单斜辉石岩、角闪单斜辉石岩、角闪石岩和辉长岩。造岩矿物为橄榄石、单斜辉石、角闪石等,副矿物为铬铁矿、磁铁矿、钛铁矿等,超镁铁质岩石中少或无斜方辉石,斜长石仅出现在边缘的辉长质岩石中。磁铁矿在单斜辉石岩和角闪石岩中为常见矿物,含量最高达15%~20%。阿拉斯加型岩体的主量元素成分揭示所有岩石均为与拉斑玄武质岩浆分异有关的亚碱性堆晶岩。微量元素成分上显示平坦的稀土元素配分型式和较低的微量元素含量,且富集大离子亲石元素,亏损高场强元素。矿物化学特征上,橄榄石富镁且Fo值变化较大;单斜辉石主要为富Ca的透辉石,其成分变化具有弧堆晶趋势;角闪石主要是镁角闪石和韭角闪石;铬铁矿富集Fe-Al,贫Cr。这些特征揭示,该类岩体成因明显不同于层状岩体和阿尔卑斯型岩体。综合岩石学、矿物学和地球化学分析表明,阿拉斯加型岩体形成于与板块俯冲作用有关的岛弧或者活动大陆边缘背景下,其母岩浆为受到熔/流体交代的地幔楔部分熔融产生的含水玄武质岩浆。各岩相为未受明显地壳混染的同源母岩浆在地壳深度结晶分异的产物。阿拉斯加型岩体的岩浆体系具有含水且高氧逸度的特征,其通常为铂族元素和铬铁矿矿床的重要载体,无或少铜镍矿化。  相似文献   

6.
A new type of podiform chromitite was found at Wadi Hilti in the northern Oman ophiolite. It is within a late-intrusive dunite body, possibly derived from olivine-rich crystal mush, between the sheeted dike complex and upper gabbro. This chromitite forms small (<30 cm in thickness) pods with irregular to lenticular shapes. Neither layering nor graded bedding is observed within the pods. The chromitite is in the upper crust, by far shallower in ophiolite stratigraphy than the other podiform chromitites that have ever been found in the Moho transition zone to the upper mantle. It is distributed along a small felsic to gabbroic melt pool within the dunite body, which was formed by melting of gabbroic blocks captured by the mush. Chromian spinel was precipitated due to mixing of two kinds of melt, a basaltic interstitial melt from the mush and an evolved, possibly felsic, melt formed by the melting of gabbro blocks. The podiform chromitite reported here is strikingly similar in petrography and spinel chemistry to the stratiform chromitite from layered intrusions. The former contains plagioclase and clinopyroxene as matrix silicates instead of olivine as well as includes euhedral and fine spinel with solid mineral inclusions. Chromian spinel of the upper crustal podiform chromitite from Oman has relatively low content of (Cr2O3 + Al2O3), the Cr/(Cr + Al) atomic ratio of around 0.6, and the relatively high TiO2 content ranging from 1 to 3 wt%. We conclude that assimilation of relatively Si-rich materials (crustal rocks or mantle orthopyroxene) by olivine-spinel saturated melts can explain the genesis of any type of chromitite.Editorial responsibility: V. Trommsdorff  相似文献   

7.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

8.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

9.
Gabbro inclusions from Tindfjallajökull are divided into two types: I. Panidiomorphic gabbros of non-cumulative origin composed of plagioclase + olivine ± clinopyroxene and interstitil vesicular glass. They have formed in equilibrium with the host magma and may either represent a marginal facies or a highly solidified magma body. In the latter case the host magma or part of it could be mobilized interstitial liquid. II. Allotriomorphic-hypidiomorphic tholeiitic olivine gabbro and diorite xenoliths with scarce Ti-pargasite which have undergone less than 10% partial melting in the host magma forming melts of alkali basaltic or Hekla andesite-like compositions dependent on the original mineral assemblage. Such liquids, enriched in K2O and possibly other incompatible elements, may contaminate basaltic magmas rising slowly through a gabbroic lower crust. Large scale production of andesites by partial melting of such rocks is not possible but would need more hydrous or differentiated source rocks.  相似文献   

10.
新疆北山地区罗东镁铁质-超镁铁质层状岩体岩石成因   总被引:4,自引:0,他引:4  
罗东镁铁质-超镁铁质岩体位于塔里木板块东北部的新疆北山地区,岩体平面形态为眼球状,出露面积约2.1 km2.由纯橄岩、单辉橄榄岩、斜长二辉橄榄岩、橄榄二辉岩、方辉辉石岩、橄长岩、橄榄辉长岩、辉长岩、苏长辉长岩和淡色辉长岩组成,堆晶结构和堆晶韵律发育,属于层状岩体.岩浆演化过程中主要分离结晶/堆晶相是橄榄石和单斜辉石,此...  相似文献   

11.
新疆北山地区的坡十镁铁-超镁铁岩体在钻孔剖面上主要由辉长岩、纯橄岩和二辉橄榄岩组成,各岩相在矿物含量上具有渐变过渡的关系,主要组成矿物橄榄石、单斜辉石和尖晶石的化学成分显示系统的变化,而底部的二辉橄榄岩中的矿物成分具有“边缘反转”现象.这些特征表明坡十岩体的形成主要受结晶分异作用控制,亦有明显的壳源混染痕迹.以反应边形式出现在辉石边部的角闪石的出现,尖晶石的分解现象,以及角闪石和金云母化学成分剖面上的系统变化揭示该岩体经历了堆晶后自上而下程度减弱的蚀变反应.在早期结晶的矿物相(橄榄石和尖晶石)中发现有硫化物颗粒或细脉产出,表明在岩浆演化的早期阶段确实发生了硫化物熔离的现象.硫化物总与含水矿物(金云母)或蚀变矿物(角闪石和蛇纹石)相伴生的特点显示铜镍硫化物的形成和沉淀不仅与壳源混染有关,而且也与堆晶后的蚀变反应密切相关.  相似文献   

12.
《地学前缘(英文版)》2020,11(6):2347-2364
The Late Cretaceous Sabzevar ophiolite represents one of the largest and most complete fragments of Tethyan oceanic lithosphere in the NE Iran. It is mainly composed of serpentinized mantle peridotites slices; nonetheless, minor tectonic slices of all crustal sequence constituents are observed in this ophiolite. The crustal sequence contains a well-developed ultramafic and mafic cumulates section, comprising plagioclase-bearing wehrlite, olivine clinopyroxenite, olivine gabbronorite, gabbronorite, amphibole gabbronorite and quartz gabbronorite with adcumulate, mesocumulate, heteradcumulate and orthocumulate textures. The crystallization order for these rocks is olivine ​± ​chromian spinel → clinopyroxene → plagioclase → orthopyroxene → amphibole. The presence of primary magmatic amphiboles in the cumulate rocks shows that the parent magma evolved under hydrous conditions. Geochemically, the studied rock units are characterized by low TiO2 (0.18–0.57 ​wt.%), P2O5 (<0.05 ​wt.%), K2O (0.01–0.51 ​wt.%) and total alkali contents (0.12–3.04 ​wt.%). They indicate fractionated trends in the chondrite-normalized rare earth element (REE) plots and multi-element diagrams (spider diagrams). The general trend of the spider diagrams exhibit slight enrichment in large ion lithophile elements (LILEs) relative to high field strength elements (HFSEs) and positive anomalies in Sr, Pb and Eu and negative anomalies in Zr and Nb relative to the adjacent elements. The REE plots of these rocks display increasing trend from La to Sm, positive Eu anomaly (Eu/Eu1 ​= ​1.06–1.54) and an almost flat pattern from medium REE (MREE) to heavy REE (HREE) region [(Gd/Yb)N ​= ​1–1.17]. Moreover, clinopyroxenes from the cumulate rocks have low REE contents and show marked depletion in light REE (LREE) compared to MREE and HREE [(La/Sm)N ​= ​0.10–0.27 and (La/Yb)N ​= ​0.08–0.22]. The composition of calculated melts in equilibrium with the clinopyroxenes from less evolved cumulate samples are closely similar to island arc tholeiitic (IAT) magmas. Modal mineralogy, geochemical features and REE modeling indicate that Sabzevar cumulate rocks were formed by crystal accumulation from a hydrous depleted basaltic melt with IAT affinity. This melt has been produced by moderate to high degree (~15%) of partial melting a depleted mantle source, which partially underwent metasomatic enrichment from subducted slab components in an intra-oceanic arc setting.  相似文献   

13.
The Massif du Sud is a large ophiolitic complex that crops out in the southern region of New Caledonia (SW Pacific). It is dominated by harzburgite tectonite that locally shows a transitional gradation to massive dunite up section. Clinopyroxene, orthopyroxene and plagioclase progressively appear in dunite up to the transition to layered wehrlite and orthopyroxene–gabbro. The dunite–wehrlite and wehrlite–gabbro contacts are parallel and the latter defines the paleo-Moho.Highly depleted modal, mineral and bulk rock compositions indicate that harzburgites are residues after high degrees (20–30%) of partial melting mainly in the spinel-stability field. Their relative enrichment in HFSE, LREE and MREE is due to re-equilibration of melting residues with percolating melts. Dunite formed in the Moho transition zone by reaction between residual mantle harzburgite and olivine-saturated melts that led to pyroxene dissolution and olivine precipitation. Rare clinopyroxene and plagioclase crystallized in interstitial melt pores of dunite from primitive, low-TiO2, ultra-depleted liquids with a geochemical signature transitional between those of island arc tholeiites and boninites.Ascending batches of relatively high-SiO2, ultra-depleted melts migrated through the Moho transition zone and generated wehrlite by olivine dissolution and crystallization of clinopyroxene, orthopyroxene and plagioclase in variable amounts. These liquids were more evolved and were produced by higher degrees of melting or from a more depleted source compared with melts that locally crystallized clinopyroxene in dunite. Ultra-depleted magmas, non-cogenetic with those that formed the Moho transition zone, ascended to the lower crust and generated gabbroic cumulates with subduction-related affinity. Thus, the ultramafic and mafic rocks in the Moho transition zone and lower crust of the Massif du Sud ophiolite are not products of fractional crystallization from a single magma-type but are the result of migration and accumulation of different melts in a multi-stage evolution.The record of high partial melting in the mantle section, and migration and accumulation of ultra-depleted subduction-related melts in the Moho transition zone and lower crust support that the Massif du Sud ophiolite is a portion of forearc lithosphere generated in an extensional regime during the early phases of the subduction zone evolution. Our results show the existence of different types of ultra-depleted melt compositions arriving at the Moho transition zone and lower crust of an infant intraoceanic paleo-arc. Ultra-depleted melts may thus be a significant component of the melt budget generated in oceanic spreading forearcs prior to aggregation and mixing of a large range of melt compositions in the crust.  相似文献   

14.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

15.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

16.
刘建国  王建 《地质学报》2016,90(6):1182-1194
西昆仑库地蛇绿岩发育小规模的铬铁矿床,矿体呈豆荚状和层状、似层状,均与纯橄岩紧密伴生。这些纯橄岩主要由橄榄石和副矿物尖晶石组成,与方辉橄榄岩相比,橄榄岩中的橄榄石粒径粗(平均2.5mm),Mg#(88~90)低,这与它们全岩低Mg#(90)值,富Al_2O_3、TiO_2、Cr_2O_3、Fe_2O_3相吻合,与熔融残余成因的纯橄岩明显不同,反映了其很可能是由熔体与方辉橄榄岩反应而成。矿体主要由块状、浸染状及脉状铬铁矿石组成;铬铁矿石中的尖晶石具有低而相对稳定的Cr#(43~56),低于富铬型铬铁矿矿床中的铬铁矿(Cr#60)。块状矿石与纯橄岩呈突变接触,矿石中的尖晶石呈浑圆状,包裹有较多橄榄石、辉石等硅酸盐矿物及角闪石等含水硅酸盐矿物;浸染状铬铁矿石中的尖晶石与橄榄石颗粒构成交织结构,或呈云朵状,沿橄榄石颗粒边界相互连接,矿石的结构构造显示了熔/岩反应成因特征。通过计算分析,我们认为该区富铝型铬铁矿石是由拉斑玄武质熔体与地幔橄榄岩反应而成,由于熔体中含有较高的H_2O,参与反应的熔体可能源于弧后扩张脊环境。  相似文献   

17.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

18.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

19.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   

20.
The Beni Bousera ultramafic massif, Morocco, is composed ofperidotite with subordinate garnet pyroxenitc units which belongto two different families: (1) the Type I pyroxenites, whichare characterized by an Fe-enrichment trend; and (2) the TypeII pyroxenites, which are characterized by high but nearly constantMg/Fe ratios and highly variable concentrations of Ca and Al;the latter family includes corundum-bearing garnet pyroxeniteswhich resemble the peraluminous eclogites and grospydites describedas xenoliths in kimberlite diatremes. The Type II pyroxenites appear as layered sheets in the peridotite,and have granuloblastic metamorphic texture. They contain aprimary association of a coarse-grained assemblage (cpx + gt;cpx + gt + sp; cpx + gt + co), and a variety of secondary andtertiary associations includ ng clinopyrox-ene, orthopyroxene,olivine, spinel, corundum, sapphirine, plagioclase, and amphibole.The primary assemblage in the corundum-bearing pyroxenite ischaracterized by clinopyroxene rich in A12O3 (up to 20 wt%),and poor in Na2O (generally less than 2 wt.%). The clinopyroxenephase is therefore richer in the Ca-Ts molecule than in thejadeite molecule. On the other hand, the composition of theprimary and secondary clinopyroxene and garnet phases showsstrong variation across the pyroxenite sheets. These variationsexpress compositional variations of the rock system across thesheets. The cpx-gt associations indicate high temperatures (1200–1350?C) in the central parts of the sheets. The crystallizationpressure may have reached at least 20 kb in the corundum-bearingassemblages. The bulk-rock composition and the compatible element's behaviourin the Type II pyroxenite sheets suggest that the modal andcryptic layering mainly resulted from igneous fractionationprocesses. The REE patterns of corundum-bearing Type II pyroxeniteare characterized by low concentrations of HREE and by significantEu anomalies. These, together with the high bulk-rock Sr/Ndratios, suggest that plagioclase segregation may have playeda significant part in the rock genesis. These geochemical featuresare similar to those described, in the literature, in some low-pressure,plagioclase-bearing adcumulates (e.g., in the crustal sequenceof the Oman ophiolite). They are quite different from thoseobserved in the Type I pyroxenite sheets in the Beni Bouseramassif, whose geochemistry suggests that plagioclase playedno part in the fractionation process, whereas garnet probablyfractionated as an early igneous phase. The Type II pyroxenitesheets have a primary isotopic signature similar to MORB, basedon the composition of leached clinopyroxene. It is concluded that the Mg-rich Type II pyroxenite sheets resultedultimately from the fractionation of a basaltic melt at lowpressure, and from the accumulation of olivine, clinopyroxene,and plagioclase along dykes cross-cutting the surrounding peridotite.The close similarities with the geochemical features in theOman ophiolite lead us to suggest that these processes may havebeen operative in an oceanic crustal environment. The high-pressureand high-temperature crystallization of the ‘primary’cpx+gt + co assemblage was achieved deep in the mantle, aftersubduction and/or dragging down in convection currents of thisparticular piece of the (oceanic?) lithosphere. Further ascentmay have resulted in partial melting of peridotite and/or pyroxenite,and in the emplacement of the Type I pyroxenite sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号