首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Mt. Baker is a dominantly andesitic stratovolcano in the northern Cascade arc. In this study, we show that the andesites are not all derived from similar sources, and that open-system processes were dominant during their petrogenesis. To this end, we discuss petrographic observations, mineral chemistry, and whole rock major and trace element chemistry for three of Mt. Baker’s late Pleistocene to Holocene lava flow units. These include the basalt and basaltic andesite of Sulphur Creek (SC) (51.4–55.8 wt% SiO2, Mg# 57–58), the Mg-rich andesite of Glacier Creek (GC) (58.3–58.7 wt% SiO2, Mg# 63–64), and the andesite and dacite of Boulder Glacier (BG) (60.2–64.2 wt% SiO2, Mg# 50–57). Phenocryst populations in all units display varying degrees of reaction and disequilibrium textures along with complicated zoning patterns indicative of open-system processes. All lavas are medium-K and calc-alkaline, but each unit displays distinctive trace element and REE characteristics that do not correlate with the average SiO2 content of the unit. The mafic lavas of SC have relatively elevated REE abundances with the lowest (La/Yb)N (~4.5). The intermediate GC andesites (Mg- and Ni-rich) have the lowest REE abundances and the highest (La/Yb)N (~6.7) with strongly depleted HREE. The more felsic BG lavas have intermediate REE abundances and (La/Yb)N (~6.4). The high-Mg character of the GC andesites can be explained by addition of 4% of a xenocrystic olivine component. However, their depleted REE patterns are similar to other high-Mg andesites reported from Mt. Baker and require a distinct mantle source. The two dominantly andesitic units (GC and BG) are different enough from each other that they could not have been derived from the same parent basalt. Nor could either of them have been derived from the SC basalt by crystal fractionation processes. Crystal fractionation also cannot explain the compositional diversity within each unit. Compositional diversity within the SC unit (basalt to basaltic andesite) can, however, be successfully modeled by mixing of basalt with compositions similar to the dacites in the BG unit. Given that the BG dacites erupted at ~80–90 ka, and a similar composition was mixed with the SC lavas at 9.8 ka, the process that produced this felsic end-member must have been repeatedly active for at least 70 ka.  相似文献   

2.
 The Aurora volcanic field, located along the northeastern margin of Mono Lake in the Western Great Basin, has erupted a diverse suite of high-K and shoshonitic lava types, with 48 to 76 wt% SiO2, over the last 3.6 million years. There is no correlation between the age and composition of the lavas. Three-quarters of the volcanic field consists of evolved (<4 wt% MgO) basaltic andesite and andesite lava cones and flows, the majority of which contain sparse, euhedral phenocrysts that are normally zoned; there is no evidence of mixed, hybrid magmas. The average eruption rate over this time period was ∼200 m3/km2/year, which is typical of continental arcs and an order of magnitude lower than that for the slow-spreading mid-Atlantic ridge. All of the Aurora lavas display a trace-element signature common to subduction-related magmas, as exemplified by Ba/Nb ratios between 52 and 151. Pre-eruptive water contents ranged from 1.5 wt% in plagioclase-rich two-pyroxene andesites to ∼6 wt% in a single hornblende lamprophyre and several biotite-hornblende andesites. Calculated oxygen fugacities fall within –0.4 and +2.4 log units of the Ni-NiO buffer. The Aurora potassic suite follows a classic, calc-alkaline trend in a plot of FeOT/MgO vs SiO2 and displays linear decreasing trends in FeOT and TiO2 with SiO2 content, suggesting a prominent role for Fe-Ti oxides during differentiation. However, development of the calc-alkaline trend through fractional crystallization of titanomagnetite would have caused the residual liquid to become so depleted in ferric iron that its oxygen fugacity would have fallen several log units below that of the Ni-NiO buffer. Nor can fractionation of hornblende be invoked, since it has the same effect as titanomagnetite in depleting the residual liquid in ferric iron, together with a thermal stability limit that is lower than the eruption temperatures of several andesites (∼1040–1080°C; derived from two-pyroxene thermometry). Unless some progressive oxidation process occurs, fractionation of titanomagnetite or hornblende cannot explain a calc-alkaline trend in which all erupted lavas have oxygen fugacites ≥ the Ni-NiO buffer. In contrast to fractional crystallization, closed-system equilibrium crystallization will produce residual liquids with an oxygen fugacity that is similar to that of the initial melt. However, the eruption of nearly aphryic lavas argues against tapping from a magma chamber during equilibrium crystallization, a process that requires crystals to remain in contact with the liquid. A preferred model involves the accumulation of basaltic magmas at the mantle-crust interface, which solidify and are later remelted during repeated intrusion of basalt. As an end-member case, closed-system equilibrium crystallization of a basalt, followed by equilibrium partial melting of the gabbro will produce a calc-alkaline evolved liquid (namely, high SiO2 and low FeOT/MgO) with a relative f O 2 (corrected for the effect of changing temperature) that is similar to that of the initial basalt. Differentiation of the Aurora magmas by repeated partial melting of previous underplates in the lower crust rather than by crystal fractionation in large, stable magma chambers is consistent with the low eruption rate at the Aurora volcanic field. Received: 7 July 1995 / Accepted: 19 April 1996  相似文献   

3.
The Cold Bay Volcanic Center,Aleutian Volcanic Arc   总被引:1,自引:0,他引:1  
The Cold Bay Volcanic Center has experienced two major stages of eruptive activity. Early (M-Series) acitivity produced bimodal Hi-Alumina basalt and calc-alkaline andesite lavas while later (FPK-Series) activity produced only calc-alkaline andesite. The spectrum of basalt compositions is believed to be due to high pressure (8 kb) fractionation at or near the base of the crust. Abundant mineralogical and geochemical evidence support a lower pressure mixing origin for all andesites. Inspection of the mineralogical data has shown that the earliest (M-Series) andesites were produced by mixing of basalt (<53 wt% SiO2) and silicic andesite (60.5 to 62.5 wt%) while later (FPK-Series) andesites resulted from the mixing of basaltic-andesite (53 to 56 wt%) and less silicic andesite (58.5 to 60.0 wt%). The major element and trace element geochemical data are consistent with a low pressure fractionation origin for the silicic endmember magmas and support the temporal variations in both mafic and silicic endmember compositions. The complete lack of crustal inclusions in all lavas is taken as evidence for a minimal crustal melting and/or assimilation role in the origin of the silicic endmembers. Many of the features of all andesites, including the important long term convergence of endmember magma compositions, are consistent with the process of liquid fractionation, accompanied by large scale magma mixing. A deduced upper limit of 62.5 wt% SiO2 for the silicic endmember magmas suggests that liquid fractionation, in the absence of major crustal melting, cannot produce more silicic magmas. A possible explanation is the presence of a rheological barrier, based on the concept of critical crystallinity (Marsh 1981), which prohibits more silicic liquids from being extracted from a crystal-liquid suspension.  相似文献   

4.
Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67–72), plagioclase (An56–60) phenocrysts, have 4–5 wt% MgO and 49.6–50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64–72) and olivine phenocrysts (Fo81–84) with spinel inclusions, and have 8–9 wt% MgO and 48.4–49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and subduction-modified mantle.  相似文献   

5.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

6.
Precise Fe/Mn ratios and MnO contents have been determined for basalts from the Hawaiian shields of Ko’olau and Kilauea by inductively coupled plasma mass spectrometry. It is well known that the youngest Ko’olau (Makapu’u-stage) shield lavas define a geochemical endmember for Hawaiian lavas in terms of CaO and SiO2 contents and isotopic ratios of O, Sr, Nd, Hf, Pb, and Os. We find that their MnO content is also distinct. Despite the small range in MnO, 0.146 to 0.176 wt%, the precision of our data is sufficient to show that among unaltered Ko’olau lavas MnO content is correlated with Nd-Hf-Pb isotopic ratios, La/Nb and Al2O3/CaO elemental ratios, and contents of SiO2, MgO and Na2O + K2O adjusted for olivine fractionation. These trends are consistent with two-component mixing; one endmember is a SiO2-rich, MnO-, and MgO-poor dacite or andesite melt, generated by low degree (10-20%) partial melting of eclogite. Since this low-MgO endmember (dacite or andesite melt) has very low FeO and MnO contents, mixing of high Fe/Mn dacite or andesite melt with a MgO-rich picritic melt, the other endmember, does not significantly increase the Fe/Mn in mixed magmas; consequently, Ko’olau and Kilauea lavas have similar Fe/Mn. We conclude that the high Fe/Mn in Hawaiian lavas relative to mid-ocean ridge basalt originates from the high MgO endmember in Hawaiian lavas.  相似文献   

7.
Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian–Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66–0.73 at intermediate SiO2 (54–58 wt%) with low CaO (<8.8%), CaO/Al2O3 (<0.54), and relatively high Na2O (>3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock ‘melts’, consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (<2.7 wt%) and K2O (<1.1 wt%) at similar Mg# (0.66–0.70). Olivine phenocrysts in basalts have in general, higher CaO and Mn/Fe and lower Ni and Ni/Mg at Fo88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984–1,143°C and 4–7 wt% H2O. For primitive basalts they are 1,149–1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with hotter peridotite in the over-lying mantle wedge. The strongly calc-alkaline igneous series at Shiveluch Volcano is interpreted to result from the emplacement and evolution of primitive andesitic magmas similar to those that are present in nearby monogenetic cones of the Shisheisky Complex.  相似文献   

8.
Between 1953 and 1974, approximately 0.5 km3 of andesite and dacite erupted from a new vent on the southwest flank of Trident volcano in Katmai National Park, Alaska, forming an edifice now known as Southwest (or New) Trident. Field, analytical, and experimental evidence shows that the eruption commenced soon after mixing of dacite and andesite magmas at shallow crustal levels. Four lava flows (58.3–65.5 wt% SiO2) are the dominant products of the eruption; these contain discrete andesitic enclaves (55.8–58.9 wt% SiO2) as well as micro- and macro-scale compositional banding. Tephra from the eruption spans the same compositional range as lava flows; however, andesite scoria (56–58.1 wt% SiO2) is more abundant relative to dacite tephra, and is the explosively erupted counterpart to andesite enclaves. Fe–Ti oxide pairs from andesite scoria show a limited temperature range, clustered around 1000 °C. Temperatures from grains found in dacite lavas possess a wider range; however, cores from large (>100 μm) magnetite and coexisting ilmenite give temperatures of ∼890 °C, taken to represent a pre-mixing temperature for the dacite. Water contents from dacite phenocryst melt inclusions and phase equilibria experiments on the andesite imply that the two magmas last resided at a water pressure of 90 MPa, and contained ∼3.5 wt% H2O, equivalent to 3 km depth if saturated. Unzoned pyroxene and sodic plagioclase in the dacite suggest that it likely underwent significant crystallization at this depth; highly resorbed anorthitic plagioclase from the andesite suggests that it originated at greater depths and underwent relatively rapid ascent until it reached 3 km, mixed with dacite, and erupted. Diffusion profiles in phenocrysts suggest that mixing preceded eruption of earliest lava by approximately one month. The lack of a compositional gap in the erupted rock suite indicates that thorough mixing of the andesite and dacite occurred quickly, via disaggregation of enclaves, phenocryst transfer from one magma to another, and direct mixing of compositionally distinct melt phases. Received: 22 September 1999 / Accepted: 4 April 2000  相似文献   

9.
The Edgecumbe volcanic field is a Holocene volcanic province located on Kruzof Island, SE Alaska. Exposed within the 260 km2 field are basalt, andesitic basalt, andesite, dacite and rhyodacite. The rhyodacites were erupted after the basalts and before the andesites. The volcanics, which are Al-rich (14–18 wt%) and lack an iron enrichment trend, range from tholeiites (47 wt% SiO2) through rhyodacites (72%), but a compositional gap of approximately 9 wt% separates the dacites and rhyodacites. Initial 87Sr/86Sr ranges from 0.70297 in the basalts to 0.70440 in a pyroxene andesite. δ 18O increases across the suite: 5.8‰ to 7.9‰. Plagioclase (An32–86) is the dominant phenocryst in all but one lava. Olivine (Fo58–86) occurs in the basic lavas (<53 wt% SiO2), but is replaced by orthopyroxene (En43–73) and clinopyroxene (En31Wo41-En48Wo40) in the more siliceous volcanics. In the basalts and rhyodacites, plagioclase is weakly zoned, but extreme zoning (<30 mole% An) is characteristic of phenocrysts in the intermediate lavas. Fractionation of the observed phenocryst assemblages could not have produced the more silicous volcanics. Instead they were generated by partial melting of intrusive basement (87Sr/86Sr=0.70487; δ 18O: 8.7–9.3) by basaltic magma and subsequent assimilation. Mass balance calculations show the rhyodacites are almost pure partial melt (<5% basaltic component) whereas the intermediate lavas contain between 30 and 60% partial melt.  相似文献   

10.
Unusually magnesian (Mg# ∼76) basalts have been sampled from a small submarine volcano situated on the Mariana arc magmatic front. Total alkalis range from 1.7 to 1.94%, Al2O3 from 9.09 to 10.3% and CaO from 13.9 to 14.09%. These lavas can be classified based on mineralogy as picrite and ankaramite. Olivine-hosted melt inclusions (MIs) have median MgO contents of 17.17–17.86 wt%, 0.35–0.5% TiO2, 42–50% SiO2 and 1.66–3.43% total alkalis, which suggest that the parental magmas were primitive mantle melts. Trace element concentrations for both MIs and lavas are arc-like, although more depleted than most arc lavas. Chlorine (182–334 ppm) and H2O contents (0.11–0.64 wt%) in the MIs are consistent with the estimated median oxygen fugacities (log ΔFMQ of + 1.53–1.66) which lie at the low end of the range estimates for arc basalts and picrites (ΔFMQ = + 1 to + 3). Isotopic compositions of Sr, Nd, Hf and Pb are similar to those of other Mariana arc lavas and indicate derivation from an Indian Ocean mantle domain. The averaged magmatic temperature estimate from several geothermometers was 1,367°C at 1–1.5 GPa. We propose that high-Mg magmagenesis in this region results from the adiabatic decompression melting of relatively anhydrous but metasomatized mantle wedge. This melting is attributed to enhanced upwelling related to unusual tectonics on the over-riding plate related to a tear or other discontinuity on the subducted slab.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

12.
Andesites from northeastern Kanaga Island,Aleutians   总被引:1,自引:0,他引:1  
Kanaga island is located in the central Aleutian island arc. Northeastern Kanaga is a currently active late Tertiary to Recent calc-alkaline volcanic complex. Basaltic andesite to andesite lavas record three episodes (series) of volcanic activity. Series I and Series II lavas are all andesite while Series III lavas are basaltic andesite to andesite. Four Series II andesites contain abundant quenched magmatic inclusions ranging in composition from high-MgO low-alumina basalt to low-MgO highalumina basalt. The spectrum of lava compositions is due primarily to fractional crystallization of a parental low-MgO high-alumina basalt but with variable degrees of crustal contamination and magma mixing. The earliest Series I lavas represent mixing between high-alumina basalt and silicic andesite with maximum SiO2 contents of 65–67 wt %. Later Series I and all Series II lavas are due to mixing of andesite magmas of similar composition. The maximum SiO2 content of the pre-mixed andesites magmas is estimated at 60–63 wt %. The youngest lavas (Series III) are all non-mixed and have maximum estimated SiO2 contents of 59 wt %. The earliest Series I lavas contain a significant crustal component while all later lavas do not. It is concluded that the maximum SiO2 contents of silicic magmas, the contribution of crustal material to silicic magma generation, and the role of magma mixing all decrease with time. Furthermore, silicic magmas generated by fractional crystallization at this volcanic center have a maximum SiO2 content of 63 wt %. All of these features have also been documented at the central Aleutian Cold Bay Volcanic Center (Brophy 1987). Based on data from these two centers a model of Aleutian calc-alkaline magma chamber development is proposed. The main features are: (1) a single low pressure magma chamber is continuously supplied by primitive low-alumina basalt; (2) non-primary high-alumina basalt is formed along the chamber margins by selective gravitational settling of olivine and clinopyroxene and retention of plagioclase; (3) sidewall crystallization accompanied by crustal melting produces buoyant silicic (>63 wt % SiO2) liquids that pond at the top of the chamber, and; (4) continued sidewall crystallization, now isolated from the chamber wall, produces silicic liquids with 63 wt % SiO2 that increase the thickness and lowers the overall SiO2 content of the upper silicic zone. It is suggested that the maximum SiO2 content of 63% imposed on fractionation-generated magmas is due to a rheological barrier that prohibits the extraction of more silicic liquids from a crystal-liquid mush along the chamber wall.  相似文献   

13.
The phase relations of primitive magnesian andesites and basaltic andesites from the Mt. Shasta region, N California have been determined over a range of pressure and temperature conditions and H2O contents. The experimental results are used to explore the influence of H2O and pressure on fractional crystallization and mantle melting behavior in subduction zone environments. At 200-MPa H2O-saturated conditions the experimentally determined liquid line of descent reproduces the compositional variation found in the Mt. Shasta region lavas. This calc-alkaline differentiation trend begins at the lowest values of FeO*/MgO and the highest SiO2 contents found in any arc magma system and exhibits only a modest increase in FeO*/MgO with increasing SiO2. We propose a two-stage process for the origin of these lavas. (1) Extensive hydrous mantle melting produces H2O-rich (>4.5--6 wt% H2O) melts that are in equilibrium with a refractory harzburgite (olivine + orthopyroxene) residue. Trace elements and H2O are contributed from a slab-derived fluid and/or melt. (2) This mantle melt ascends into the overlying crust and undergoes fractional crystallization. Crustal-level differentiation occurs under near-H2O saturated conditions producing the distinctive high SiO2 and low FeO*/MgO characteristics of these calc-alkaline andesite and dacite lavas. In a subset of Mt. Shasta region lavas, magnesian pargasitic amphibole provides evidence of high pre-eruptive H2O contents (>10 wt% H2O) and lower crustal crystallization pressures (800 MPa). Igneous rocks that possess major and trace element characteristics similar to those of the Mt. Shasta region lavas are found at Adak, Aleutians, Setouchi Belt, Japan, the Mexican Volcanic Belt, Cook Island, Andes and in Archean trondhjemite--tonalite--granodiorite suites (TTG suites). We propose that these magmas also form by hydrous mantle melting.Editorial responsibility: J. Hoefs  相似文献   

14.
Quaternary volcanism in the Mt. Shasta region has produced primitive magmas [Mg/(Mg+Fe*)>0.7, MgO>8 wt% and Ni>150 ppm] ranging in composition from high-alumina basalt to andesite and these record variable extents ofmelting in their mantle source. Trace and major element chemical variations, petrologic evidence and the results of phase equilibrium studies are consistent with variations in H2O content in the mantle source as the primary control on the differences in extent of melting. High-SiO2, high-MgO (SiO2=52% and MgO=11 wt%) basaltic andesites resemble hydrous melts (H2O=3 to 5 wt%) in equilibrium with a depleted harzburgite residue. These magmas represent depletion of the mantle source by 20 to 30 wt% melting. High-SiO2, high-MgO (SiO2=58% and MgO=9 wt%) andesites are produced by higher degrees of melting and contain evidence for higher H2O contents (H2O=6 wt%). High-alumina basalts (SiO2=48.5% and Al2O3=17 wt%) represent nearly anhydrous low degree partial melts (from 6 to 10% depletion) of a mantle source that has been only slightly enriched by a fluid component derived from the subducted slab. The temperatures and pressures of last equilibration with upper mantle are 1200°C and 1300°C for the basaltic andesite and basaltic magmas, respectively. A model is developed that satisfies the petrologic temperature constraints and involves magma generation whereby a heterogeneous distribution of H2O in the mantle results in the production of a spectrum of mantle melts ranging from wet (calc-alkaline) to dry (tholeiitic).  相似文献   

15.
Chromitites from a single section through the mantle in the Oman ophiolite are of two different types. Low-cr# chromitites, of MORB affinity are found in the upper part of the section, close to the Moho. High-cr# chromitites, with arc affinities are found deeper in the mantle. Experimental data are used to recover the compositions of the melts parental to the chromitites and show that the low-cr# chromitites were derived from melts with 14.5–15.4 wt% Al2O3, with 0.4 to 0.9 wt% TiO2 and with a maximum possible mg# of 0.76. In contrast the high-cr# chromitites were derived from melts with 11.8–12.9 wt% Al2O3, 0.2–0.35 wt% TiO2 and a maximum melt mg# of 0.785. Comparison with the published compositions of lavas from the Oman ophiolite shows that the low-cr# chromitites may be genetically related to the upper (Lasail, and Alley) pillow lava units and the high-cr# chromitites the boninites of the upper pillow lava Alley Unit. The calculated TiO2–Al2O3 compositions of the parental chromitite magmas indicate that the high-cr# chromitites were derived from high-Ca boninitic melts, produced by melting of depleted mantle peridotite. The low-cr# chromitites were derived from melts which were a mixture of two end-members—one represented by a depleted mantle melt and the other represented by MORB. This mixing probably took place as a result of melt–rock reaction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
We performed modified iterative sandwich experiments (MISE) to determine the composition of carbonatitic melt generated near the solidus of natural, fertile peridotite + CO2 at 1,200–1,245°C and 6.6 GPa. Six iterations were performed with natural peridotite (MixKLB-1: Mg# = 89.7) and ∼10 wt% added carbonate to achieve the equilibrium carbonatite composition. Compositions of melts and coexisting minerals converged to a constant composition after the fourth iteration, with the silicate mineral compositions matching those expected at the solidus of carbonated peridotite at 6.6 GPa and 1,230°C, as determined from a sub-solidus experiment with MixKLB-1 peridotite. Partial melts expected from a carbonated lherzolite at a melt fraction of 0.01–0.05% at 6.6 GPa have the composition of sodic iron-bearing dolomitic carbonatite, with molar Ca/(Ca + Mg) of 0.413 ± 0.001, Ca# [100 × molar Ca/(Ca + Mg + Fe*)] of 37.1 ± 0.1, and Mg# of 83.7 ± 0.6. SiO2, TiO2 and Al2O3 concentrations are 4.1 ± 0.1, 1.0 ± 0.1, and 0.30 ± 0.02 wt%, whereas the Na2O concentration is 4.0 ± 0.2 wt%. Comparison of our results with other iterative sandwich experiments at lower pressures indicate that near-solidus carbonatite derived from mantle lherzolite become less calcic with increasing pressure. Thus carbonatitic melt percolating through the deep mantle must dissolve cpx from surrounding peridotite and precipitate opx. Significant FeO* and Na2O concentrations in near solidus carbonatitic partial melt likely account for the ∼150°C lower solidus temperature of natural carbonated peridotite compared to the solidus of synthetic peridotite in the system CMAS + CO2. The experiments demonstrate that the MISE method can determine the composition of partial melts at very low melt fraction after a small number of iterations.  相似文献   

17.
Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y < 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.  相似文献   

18.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

19.
Neogene volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, are represented by a typical intermediate-basic and intermediate alkaline rock association, with latite-trachyte as the main rock type. The results of chemical analysis are: SiO2=52%–62%, Al2O3>15%, Na2O/K2O>1 and MgO<3.30%. In addition, the volcanic rocks are LREE-enriched with LREE/HREE=10–13, (La/Yb)N=15–19, and show a weak negative Eu anomaly with δEu=0.71–0.89. The close relationship between Mg# and SiO2 and the co-variation of the magmatophile elements and ultra-magmatophile elements such as La/Sm-La and Cr-Tb indicate that this association of volcanic rocks is the product of comagmatic fractional crystallization. The rock association type and lower Sm/Yb values (Sm/Yb=3.23–3.97) imply that this association of volcanic rocks should have originated from partial melting of spinel lherzolite in the lithospheric mantle. On the other hand, the weak negative Eu anomaly and relative depletion in Nb, Ta and Ti reflect the features of terrigenous magma. So the Neogene Belog Co alkaline volcanic rocks should be the result of partial melting of the special crust-mantle transition zone on the Qinghai-Tibet Plateau.  相似文献   

20.
Bontâu is a major eroded composite volcano filling the Miocene Zârand extensional basin, near the junction between the Codru-Moma and Highi?-Drocea Mountains, at the tectonic boundary between the South and North Apuseni Mountains. It is a quasi-symmetric structure (16–18 km in diameter) centered on an eroded vent area (9×4 km), buttressed to the south against Mesozoic ophiolites and sedimentary deposits of the South Apuseni Mountains. The volcano was built up in two sub-aerial phases (14–12.5 Ma and 11–10 Ma) from successive eruptions of andesite lava and pyroclastic rocks with a time-increasing volatile budget. The initial phase was dominated by emplacement of pyroxene andesite and resulted in scattered individual volcanic lava domes associated marginally with lava flows and/or pyroclastic block-and-ash flows. The second phase is characterized by amphibole-pyroxene andesite as a succession of pyroclastic eruptions (varying from strombolian to subplinian type) and extrusion of volcanic domes that resulted in the formation of a central vent area. Numerous debris flow deposits accumulated at the periphery of primary pyroclastic deposits. Several intrusive andesitic-dioritic bodies and associated hydrothermal and mineralization processes are known in the volcano vent complex area. Distal epiclastic deposits initially as gravity mass flows and then as alluvial volcaniclastic and terrestrial detritic and coal filled the basin around the volcano in its western and eastern part. Chemical analyses show that lavas are calc-alkaline andesites with SiO2 ranging from 56–61%. The petrographical differences between the two stages are an increase in amphibole content at the expense of two pyroxenes (augite and hypersthene) in the second stage of eruption; CaO and MgO contents decrease with increasing SiO2. In spite of a ~4 Ma evolution, the compositions of calc-alkaline lavas suggest similar fractionation processes. The extensional setting favored two pulses of short-lived magma chamber processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号