首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The granulite‐facies rocks in the Tomkinson Ranges of central Australia are dominated by layered felsic (quartzofeldspathic) gneisses with minor interbanded mafic, calcareous, ferruginous, and quartzitic granulites. They are regarded as representing a middle Proterozoic metasedimentary and/or metavolcanic sequence which has undergone anhydrous granulite‐facies metamorphism approximately 1200 m.y. ago. Conditions of metamorphism have been derived from a petrogenetic grid based on several experimentally determined reactions and give estimates of 10–11 kb pressure and 950–1000°C. Such metamorphism could take place close to the base of the crust with a moderate geothermal gradient of 25–30°C/km.  相似文献   

2.
The Cretaceous Yuhuashan igneous complex contains abundant xenoliths of high‐grade metamorphic rocks, with the assemblage garnet ± hypersthene + biotite + plagioclase + K‐feldspar + quartz. The biotite in these samples has high TiO2 (>3.5%), indicating high‐T metamorphism (623–778 °C). P–T calculations for two felsic granulites indicate that the peak metamorphism took place at 880–887 °C and 0.64–0.70 GPa, in the low pressure/high temperature (LP‐HT) granulite facies. Phase equilibrium modelling gives equilibrium conditions for the peak assemblage of a felsic granulite of >0.6 GPa and >840 °C, consistent with the P–T calculations, and identifies an anticlockwise P–T–t path. LA‐ICPMS U–Pb dating of metamorphic and detrital zircon from one xenolith reveals that the granulite facies metamorphism took place at 273.6 ± 2.2 Ma, and the protolith was a sedimentary rock deposited later than 683 Ma. This represents the first Late Palaeozoic (Variscan) granulite facies event identified in the South China Block (SCB). Coupled with other geological observations, the LP‐HT metamorphic conditions and anticlockwise P–T–t path suggest that Variscan metamorphism probably occurred in a post‐orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of mantle‐derived magma. Based on P–T estimates and the comparison of the protolith composition with mid‐ to low‐grade metamorphic rocks in the area, it is suggested that the mid‐lower crust under the Xiangshan–Yuhuashan area consists mainly of these felsic granulites and gneisses, whose protoliths were probably subducted to these depths during the Early Palaeozoic orogeny in the SCB, and underwent two episodes of metamorphism during Early Palaeozoic and Late Palaeozoic time.  相似文献   

3.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

4.
 Mafic gneisses occur as lenses or thin layers in spatial association with tonalitic leucosomes in a granulite zone of the Quetico subprovince of the Superior Province, Ontario, Canada, and exhibit concentric zoning with a biotite-rich margin, orthopyroxene-rich outer zone, clinopyroxene-rich central zone, and, occasionally, patches of relict amphibolites within the clinopyroxene-rich zone. The granulites (biotite-, orthopyroxene- and clinopyroxene-rich zones) in the mafic gneisses are characterized by significant amounts of rare earth element (REE)-bearing fluorapatite (1–10 vol.%) and other REE-rich minerals (allanite, monazite and zircon). Fluorapatite shows an increase in modal abundance from the biotite- and orthopyroxene-rich zones to the clinopyroxene-rich zone, but is rare in the relict amphibolites. Textural evidence and element partitioning indicate that fluorapatite (and other REE-rich minerals) was part of the peak metamorphic assemblages. Whole-rock geochemical analyses confirm that the granulites in the mafic gneisses contain anomalously high contents of REE and high field strength elements (HFSE), whereas the relict amphibolites are geochemically typical of tholeiitic basalts. Mass-balance calculations reveal that REE and HFSE were introduced into the mafic gneisses during the prograde granulite facies metamorphism, pointing to REE mobility under granulite facies metamorphic conditions. The presence of high F contents in the REE-rich minerals and their associated minerals (e.g. biotite and hornblende) suggests that REE and HFSE may have been transported as fluoride complexes during the granulite facies metamorphism. This conclusion is supported by previously published results of hydrothermal experiments on the partitioning of REE between fluorapatite and F-rich fluids at 700°C and 2 kbar. Received: 2 May 1995 / Accepted: 28 September 1995  相似文献   

5.
Archaean granulites from the type charnockite locality of Pallavaram, Madras City, Tamil Nadu, southern India consist of a bimodal suite of basic and silicic orthogneisses, associated with metasedimentary gneisses (khondalites). Charnockite is the dominant rock type. Basic granulites display a tholeiitic trend of strong iron enrichment accompanied by an increase in the concentration of the rare earth elements (REE), and the development of appreciable negative europium anomalies. These trends are considered to reflect low pressure fractional crystallisation of pyroxene-plagioclase assemblages under conditions of lowf O 2. Ultramafic granulites may represent the cumulus material of such a process. The silicic granulites (charnockites) are generally K2O rich and in marked contrast to the low K2O (tonalitic) silicic gneisses which dominate most granulite facies terrains. Their REE abundances, however, embrace the complete range of patterns observed in both K-rich and K-poor Archaean gneisses. The presence of a large number of pre-granulite facies potassic pegmatites in the area suggests metasomatism of an originally less potassic suite of rocks. Trace element considerations lead to a model whereby metasomatism and partial fusion of silicic gneisses in the terrain preceded the granulite facies metamorphic event. This sequence of events is best related to fluctuations in the composition of metamorphic fluids in the lower crust.  相似文献   

6.
《Gondwana Research》2000,3(1):79-89
The structural and petrographic studies of the metamorphic rocks of the Schirmacher region, East Antarctica, indicate polyphase metamorphism, dominantly of an early granulite and later amphibolite facies metamorphism. In order to understand the metamorphic evolution of the region, the temperature and pressure of metamorphism has been estimated for felsic gneisses and charnockites using conventional models of geothermometry and geobarometry. The studies showed that, the early granulite facies metamorphism and charnockitization took place around 827±29°C at 7.3±0.3 kbar, while the later amphibolite facies metamorphism and granitization took place around 654±27°C at 5.4±0.4 kbar. The pressure and temperature recorded in these rocks suggest that metamorphism was initiated at 20 to 27 km depth, with a geothermal gradient of around 32°C/km. The P-T conditions reflect isobaric cooling path, with a gentle dP/dT slope (∼10±1 bar/°C). The isobaric cooling path owes its origin to the underplating of crust by mantle derived magmas.  相似文献   

7.
Records of Earth's primitive crust are scarce. Eoarchean (older than 3.6 Ga) banded mafic to felsic gneisses have been discovered in the São Francisco Craton, Brazil, pushing back by over 100 million years the oldest gneisses known to date in South America (3.5 Ga). Zircon U‐Pb data yield rock ages from 3,598 to 3,642 Ma with a few ca. 3.65–3.69 Ga grains suggesting even older rocks in the area. Zircon grains show significantly negative to nearly chondritic initial εHf values and two‐stage model ages from 3.82 to 4.33 Ga, which may indicate the existence of a recycled Hadean to early Eoarchean crust in the region. The felsic gneisses are chemically similar to the low‐pressure Tonalite‐Trondhjemite‐Granodiorite association whereas the mafic gneisses have geochemical signatures that resemble within‐plate basaltic andesite to andesite of Iceland (icelandites). The results are relevant to constrain the composition of Earth's first continental crust.  相似文献   

8.
The isotope geochemistry (Sm-Nd, Pb-Pb and Rb-Sr) of mafic gneisses from the basement of the Carswell structure (Saskatchewan, Canada), rich both in Mg and incompatible elements (K, Rb, REE) has been investigated. A good Sm-Nd alignment gives a slope corresponding to an age of 3.7 Ga. However, comparison with major elements data strongly suggests that this alignment is a mixing line between Mg-rich, high CaO/Al2O3 magmas and the local felsic crust older than 2.9 Ga. The mafic magmas were probably of komatiitic affinity (MgO > 20 percent) but, nevertheless, were extracted from a source with nearly chondritic to slightly enriched light REE distribution. The age of the komatiite emplacement (1.9–2.9 Ga) is only loosely constrained by the oldest crustal residence age in the series and the subsequent metamorphic events. The granulite facies climax is dated at ca. 1.9 Ga by concordant whole rock Pb-Pb and Sm-Nd garnet-whole rock isochrons. The Rb-Sr systematics have been disturbed by later event(s) younger than 1.5–1.7 Ga, but do not permit a more precise assessment of the perturbation age.  相似文献   

9.
Fault bound blocks of granulite and enderbite occur within upperamphibolite-facies migmatitic tonalitic–trondhjemitic–granodioritic(TTG) gneisses of the Iisalmi block of Central Finland. Theseunits record reworking and partial melting of different levelsof the Archean crust during a major tectonothermal event at2·6–2·7 Ga. Anhydrous mineral assemblagesand tonalitic melts in the granulites formed as a result ofhydrous phase breakdown melting reactions involving amphiboleat peak metamorphic conditions of 8–11 kbar and 750–900°C.A nominally fluid-absent melting regime in the granulites issupported by the presence of carbonic fluid inclusions. Thegeochemical signature of light rare earth element (LREE)-depletedmafic granulites can be modelled by 10–30 wt % partialmelting of an amphibolite source rock leaving a garnet-bearingresidue. The degree of melting in intermediate granulites isinferred to be less than 10 wt % and was restricted by the availabilityof quartz. Pressure–temperature estimates for the TTGgneisses are significantly lower than for the granulites at660–770°C and 5–6 kbar. Based on the P–Tconditions, melting of the TTG gneisses is inferred to haveoccurred at the wet solidus in the presence of an H2O-rich fluid.A hydrous mineralogy, abundant aqueous fluid inclusions andthe absence of carbonic inclusions in the gneisses are in accordancewith a water-fluxed melting regime. Low REE contents and strongpositive Eu anomalies in most leucosomes irrespective of thehost rock composition suggest that the leucosomes are not meltcompositions, but represent plagioclase–quartz assemblagesthat crystallized early from felsic melts. Furthermore, similarplagioclase compositions in leucosomes and adjacent mesosomesare not a ‘migmatite paradox’, as both record equilibrationwith the same melt phase percolating along grain boundaries. KEY WORDS: Archean continental crust; fluid inclusion; granulite; migmatite; partial melting  相似文献   

10.
A distinctive group of augen gneisses and ferrodiorites (termed the iron-rich suite) is a component of the early Archaean Amîtsoq gneisses of southern West Greenland. The iron-rich suite outcrops south of the mouth of Ameralik fjord in an area that underwent granulite facies metamorphism in the early Archaean. The iron-rich suite forms approximately 30% of the Amîtsoq gneiss of this area and occurs as sheets and lenses up to 500 m thick. The rest of the Amîtsoq gneisses are predominantly tonalitic-granodioritic, banded grey gneisses. Despite intense deformation and polymetamorphism, there is local field evidence that the iron-rich suite was intruded into the grey gneisses after they had been affected by tectonism and metamorphism. The banded grey gneisses are interpreted as 3,700 to 3,800 Ma old; U-Pb zircon ages from the iron-rich suite give concordia intercepts at circa 3,600 Ma.Coarse grained augen gneisses with microcline mega-crysts are the dominant lithology of the iron-rich suite. They are mostly granodioritic, grading locally into granite and diorite, and are generally rather massive, but locally have well-preserved layering or are markedly heterogeneous. Mafic components are commonly concentrated into clots rich in hornblende and biotite and containing apatite, ilmenite, sphene and zircon. Variation in the proportion of these clots is the main reason for the compositional variation of the augen gneisses. The ferrodiorites of the suite occur as lenses in the augen gneisses. Leucocratic granitoid sheets locally cut the iron-rich suite. The augen gneisses and ferrodiorites have geochemical characteristics in common, such as high Fe/Mg values and high contents of FeOt, TiO2, P2O5, Zr, Y and total REE (rare earth elements).The iron-rich suite probably formed as follows:Heating of the lower crust adjacent to mantle-derived basic intrusions caused melting of the lower crust, giving rise to granodioritic magmas. Disruption of partially crystallised basic intrusions caused mixing of the crustal melts and the fractionated mantle melts to produce the augen gneisses with their high FeOt, TiO2, P2O5, Zr, Y and total REE enrichment. Fragmented, crystallised parts of the basic intrusions gave rise to the ferrodiorite inclusions. These heterogeneous plutons rose to higher crustal levels where they crystallised as sheets and possibly were responsible for the local granulite facies metamorphism. The granitoid sheets that cut the iron-rich suite are interpreted as crustal melts of local origin.The iron-rich suite resembles Proterozoic rapakivi granite-ferrodiorite-norite (anorthosite) associations which form characteristic suites in late- to post-tectonic environments in recently thickened sial. The occurrence of this type of magmatism in the early Archaean is evidence of the complex, polygenetic nature of the oldest known continental crust.  相似文献   

11.
Seventeen rocks from the Lewisian Gneiss of the Inner Hebrides of Scotland, which represent three distinct lithological types at granulite to greenschist facies of metamorphism show rare-earth element patterns which seem not to have been disturbed by their complex metamorphic history. Some indication of their origin can be obtained by simple geochemical models.Three tonalitic pyroxene gneisses are characterized by: (1) light REE enrichment and heavy REE depletion; (2) low total REE contents; (3) moderate Eu enrichment. Their REE chemistry can be approximated by a model involving 10% partial melting of various garnet-bearing basaltic source materials. Alternatively, they may be some form of crystal cumulate, preserving their original anhydrous mineralogy, representing 30% crystallization of a parent tonalitic magma.Three tonalitic to granodioritic hornblende-biotite gneisses are characterized by: (1) light REE enrichment and heavy REE depletion; (2) significantly higher total REE contents than the pyroxene gneisses; (3) moderate Eu depletion. Their REE patterns can be approximated by a residual silicic melt in a model involving 30% fractional crystallization of solids with the modal mineralogy of the pyroxene gneisses or 40% removal of pure anorthosite from a parent dacitic magma.Two strongly metasomatised diopside-actinolite gneisses and one highly sheared epidote-chlorite gneiss have REE patterns which are not significantly different from the hornblende-biotite gneisses which were their precursors before metasomatism and late greenschist-facies shearing. This suggests that strong alteration has not enciphered the REE systematics of the gneisses.Basic gneisses of quartz tholeiite composition occurring as early dykes, which shared the same metamorphic history as the tonalitic to granodioritic gneisses, are characterised by: (1) slight enrichment in light REE relative to heavy REE; (2) variable total REE contents; (3) little difference between granulite and amphibolite facies types. Their REE patterns can be matched by models involving 5–15% partial melting of ultrabasic mantle with 3 times chondritic REE abundances, leaving a residue of olivine and orthopyroxene.  相似文献   

12.
Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6 ± 4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the same time as indicated by 381.2 ± 6.7 Ma Sm–Nd garnet age obtained for the mid-crustal metapelites. The second metamorphic episode, which affected most of the lower crust in the Orlica–Śnieżnik Massif (OSM) occurred at ca. 340 Ma as determined by U–Pb zircon and Sm–Nd garnet dating of granulites in this and previous studies is interpreted as a high temperature event, which took place on a retrograde path.

Trace element distribution in garnets from the layered granulites showed significant differences in distribution of medium and HREE in garnets from mafic and felsic protoliths over the course of the metamorphic evolution. This had strong impact on the isotopic dating results and led to “decoupling” of the Sm–Nd and Lu–Hf clocks, which recorded timing of the two different metamorphic episodes separated by as much as 40 Ma. Moreover, the preservation of the HREE growth zonation profile in garnets from the felsic granulites whose minimum metamorphic temperature was established at 900 °C implies that the Lu–Hf system under relatively dry conditions does not undergo significant diffusional re-equilibration even at such extreme temperatures and therefore it sill provides the age of prograde garnet growth. Under hydrous conditions, at least some resetting will take place, as documented by the partially relaxed HREE zonation profile in the amphibolitised mafic granulite, which yielded a 10 Ma younger age. The HREE distribution study appeared to be a particularly valuable and essential tool, which allowed us to distinguish garnet growth from post-growth complexities and hence, provide improved age interpretation. Medium REE, on the other hand, did not show any obvious correlation with the isotopic signature of garnet.

Two distinct metamorphic episodes recorded in the Stary Gierałtów region show that buoyancy-driven uplift of UHP rocks can be arrested at the base of a continental crust if not supported by any additional force. In our case study, the UHP rocks would have never reached the surface if their uplift had not been resumed after a long pause under a different tectonic regime. The multistage, discontinuous uplift revealed by the UHP rocks of the OSM provides a new scenario for the exhumation of continental crust from mantle depths distinct from the fast-track exhumation histories recognized in UHP terranes elsewhere.  相似文献   


13.
Many of the coarse-grained peridotite inclusions in basanitesfrom Nunivak Island, Alaska, contain amphibole and a smallerfraction also contain phlogopite and apatite. All of these peridotiteshave light REE/heavy REE abundance ratios greater than chondritesand many have abundances of K, Rb, Sr, Ba and light REE whichexceed estimates for primitive mantle. On the basis of mineraltextures and compositions we infer that the clinopyroxene, amphibole,phlogopite and apatite equilibrated with a metasomatic fluid.Isotopic (Sr and Nd) ratios and parent-daughter abundance datafor the coarse-grained peridotites constrain the age of themetasomatism to be less than 200 million years. Associated amphibole pyroxenite inclusions are not metasomatized;these inclusions probably formed as crystal segregates froman alkalic magma. Both pyroxenites and coarse-grained peridotitesare isotopically similar to basalts from Nunivak Island. Usingthese data, we propose a model in which the metasomatized peridotiteswere wallrocks located adjacent to the pyroxenites, and thatmetasomatism of these peridotites was caused by the infiltrationof a residual silicate melt or volatile-rich fluid derived fromthe parental magma of the pyroxenites; i.e. the metasomatismwas a consequence of basaltic magmatism. Furthermore, the parentalmagma of the pyroxenites was probably petrogenetically relatedto the Nunivak volcanism. REE modelling of fluids in equilibriumwith clinopyroxenes from the coarse-grained peridotites is consistentwith this model.  相似文献   

14.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   

15.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

16.
Clinopyroxenes from pyroxenite, ijolite and nepheline syenite from the main intrusion of the Alnö complex define two sub-parallel compositional trends with respect to Na, Ca and FeTOT plotted against alkali-pyroxene fractionation index (Na–Mg). Both trends define a smooth fractionation of increasing Na and FeTOT and decreasing Ca with increasing Na–Mg, but one set of samples contain clinopyroxenes that constantly plot at higher Na and lower FeTOT and Ca (at similar Na–Mg) than the rest of the samples. Clinopyroxenes with higher Ca and FeTOT and lower Na (trend 1) co-exist with substantial amounts of Ti-andradite (up to 70 vol.%), while the sample set defining the more Na-rich trend (trend 2) lack co-existing Ti-andradite. Clinopyroxenes from both trends show fractionated REE patterns with a distinct difference in HREE content, reflecting the content of co-existing Ti-andradite. The rocks of the first Ti-andradite-bearing trend crystallized slightly prior to the rocks of the second trend, probably from a primitive, Ca- and Ti-rich nephelinitic magma. Crystallisation of pyroxenite and melteigite occurred under low aSiO2 and high aCaO and aTiO2 as evidenced by the presence of perovskite and sometimes substantial amounts of magnetite. Subsequent increase in aSiO2 is evidenced in the overgrowth of perovskite by titanite, which in turn is overgrown by Ti-andradite. Nepheline syenitic residuals crystallized under higher aSiO2 and aNa2O and lower aCaO and aTiO2, which reduced Ti-andradite into an accessory phase and produced more Si- and Na-rich clinopyroxenes. Some of these residuals probably also mixed with new primitive magma producing a hybrid magma that crystallised the more Na-rich and Ca- and FeTOT-poor clinopyroxenes of trend 2. The complete lack of Ti-andradite in these rocks indicates different crystallisation conditions and also a different magma composition.  相似文献   

17.
Field observations and CA-LA-ICP-MS U–Pb zircon ages and Hf isotope compositions obtained from migmatitic orthogneisses and granitoids from the Belo Horizonte Complex, southern São Francisco Craton, indicate a major period of partial melting and production of felsic rocks in the Neoarchean. Our observations show that the complex is an important site for studying partial melting processes of Archean crystalline crust. Much of the complex exposes fine-grained stromatic migmatites that are intruded by multiple leucogranitic veins and sheeted dikes. Both migmatites and leucogranite sheets are crosscut by several phases of granitoid batholiths and small granitic bodies; both of which are closely associated with the host banded gneisses. Chemical abrasion followed by detailed cathodoluminescence imaging revealed a wide variety of zircon textures that are consistent with a long-lived period of partial melting and crustal remobilization. Results of U-Pb and Hf isotopes disclose the complex as part of a much wider crustal segment, encompassing the entire southern part of the São Francisco Craton. Compilation of available U-Pb ages suggests that this crustal segment was consolidated sometime between 3000 Ma and 2900 Ma and that it experienced three main episodes of partial melting before stabilization at 2600 Ma. The partial melting episodes took place between 2750 Ma and 2600 Ma as a result of tectonic accretion and peeling off the lithospheric mantle and lower crust. This process is likely responsible for the emplacement of voluminous potassic granitoids across the entire São Francisco Craton. We believe that the partial melting of Meso-Archean crystalline crust and production of potassic granitoids are linked to a fundamental shift in the tectonics of the craton, which was also responsible for the widespread intrusion of large syenitic bodies in the northern part of the craton, and the construction of layered mafic–ultramafic intrusions to the south of the BHC.  相似文献   

18.
The deformation and recrystallization microstructures in biotite from the Woodroffe Thrust mylonites are described and interpreted. The degree of strain causing recrystallization and the nucleation mechanisms differ across the mylonite zone. These differences are associated with the contrast in water content between the granulite and amphibolite facies felsic gneisses on either side of the zone. p]In moderately mylonitized granulite facies felsic gneisses (0.1–0.6% H2O) subgrains form in intensely deformed host biotite and recrystallization mechanisms involve subgrain rotation both on host grain boundaries and associated with kink band bulge. In the amphibolite facies felsic gneisses (0.9–1.2% H2O) the biotite recrystallizes by a mechanism involving localized internal kinking of the host and subsequent migration of high angle boundaries generated on the kink limbs. This combined with rotation due to the concurrent deformation generates high angle grain boundaries around the entire original kink limb and thus a new grain.  相似文献   

19.
Mantle xenocrysts from early Triassic kimberlite pipes from Kharamai,Ary-Mastakh and Kuranakh fields in the Anabar shield of Siberia revealing similar compositional trends were studied to estimate the superplume influence on the subcratonic lithosphere mantle(SCLM).Pressure-temperature(PT) reconstructions using monomineral thermobarometry for 5 phases show division of the SCLM beneath the Kharamai field into 6 units:pyroxenitic Fe-rich(1-2 GPa) and Mg-rich(2-3 GPa) layers;middle with two levels of Gar-Sp pyroxenites at ~3 and 4-5 GPa;Gar-dunite-harzburgites ~4.5-6.5 GPa subjected to Ilm-Px vein metasomatism;and a Mg-rich dunite lower part.In the Anabar shield(Ary-Mastakh,Dyuken and Kuranakh fields) mantle lithosphere is composed of three large units divided into two parts:upper part with amphiboles and phlogopite;two levels of pyroxenites and eclogites at 3 and 4 GPa,and a lower part composed of refertilized dunites.Diagrams showing P-Fe~#Gar clusters for garnets and omphacites illustrate the differences between SCLM of these localities.Differences of Triassic SCLM from Devonian SCLM are in simple layering;abundance of Na-Cr-amphiboles and metasomatism in the upper SCLM part,thick pyroxenite-eclogite layer and lower part depletion,heated from SCLM base to 5.0 GPa.Kharamai mantle clinopyroxenes represent three geochemical types:(1) harzburgitic with inclined linear REE,HFSE troughs and elevated Th,U;(2) lherzolitic or pyroxenitic with round TRE patterns and decreasing incompatible elements;(3) eclogitic with Eu troughs,Pb peak and high LILE content.Calculated parental melts for garnets with humped REE patterns suggest dissolution of former Cpx and depression means Cpx and garnets extraction.Clinopyroxenes from Ary-Mastakh fields show less inclined REE patterns with HMREE troughs and an increase of incompatible elements.Clinopyroxenes from Kuranakh field show flatter spoon-like REE patterns and peaks in Ba,U,Pb and Sr,similar to those in ophiolitic harzburgites.The PT diagrams for the mantle sections show high temperature gradients in the uppermost SCLM accompanied by an increase of P-Fe~#Ol upward and slightly reduced thickness of the mantle keel of the Siberian craton,resulting from the influence of the Permian-Triassic superplume,but with no signs of delamination.  相似文献   

20.
An eclogitemafic granulite occurs as a rare boudin within a felsic kyaniteK‐feldspar granulite in a low‐strain zone. Its boundary is marked by significant metasomatism–diffusional gain of potassium at the centimetre‐scale, and probable infiltration of felsic melt on a larger scale. This converted the eclogitemafic granulite into an intermediate‐composition, ternary‐feldspar‐bearing granulite. Based on inclusions in garnet, the peak P–T conditions of the original eclogite are 18 kbar at 850950 °C, with later matrix re‐equilibration at 12 kbar and 950 °C. Four samples from the transition of the eclogitemafic granulite through to the intermediate granulite were studied. In the eclogite, REE patterns in the garnet core show no Eu anomaly, compatible with crystallization in the absence of plagioclase and consistent with eclogite facies conditions. Towards the rim of garnet, LREE decrease, and a weak negative Eu anomaly appears, reflecting passage into HP granulite facies conditions with plagioclase present. The rims of garnet next to ternary feldspar in the intermediate granulite show the lowest LREE and deepest Eu anomalies. Zircon from the four samples was analysed by LASS (laser ablation–split‐stream inductively coupled plasma–mass spectrometry). It shows U–Pb ages from 404 ± 4.0 to 331 ± 3.3 Ma, with a peak at 340 ± 4.0 Ma corresponding to the likely exhumation of the rocks to 12 kbar. Older ages from zircon with steep HREE patterns indicate the minimum age of the protolith, and ages <360 ± 4.0 Ma are interpreted to correspond to the eclogite facies metamorphism. Only some zircon grains ≤350 ± 4.0 Ma have flat HREE patterns, suggesting that these are primarily modified protolith grains, rather than new zircon crystallized in the eclogite‐ or granulite facies. The metasomatic processes that converted the eclogitemafic granulite to an intermediate granulite may have facilitated zircon modification as zircon in the intermediate granulite has flat HREE and ages of 340 ± 4.0 Ma. The difference between the oldest and youngest ages with flat REE patterns indicates a 16 ± 5.6 Ma period of zircon modification in the presence of garnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号