首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pore pressure changes in a geothermal reservoir, as a result of injection and/or production of water, result in changes of stress acting on the reservoir rock and, consequently, changes in the mechanical and transport properties of the rock. Bulk modulus and permeability were measured at different pressures and temperatures. An outcropping equivalent of Rotliegend reservoir rock in the North German Basin (Flechtinger sandstone) was used to perform hydrostatic tests and steady state fluid flow tests. Permeability measurements were conducted while cycling confining pressure; the dependence of permeability on stress was determined at a constant downstream pressure of 1 MPa. Also, temperature was increased stepwise from 30 to 140 °C and crack porosity was calculated at different temperatures. Although changes in the volumes of cracks are not significant, the cracks control fluid flow pathways and, consequently, the permeability of the rock. A new model was derived which relates microstructure of porosity, the stress–strain curve, and permeability. Porosity change was described by the first derivative of the stress–strain curve. Permeability evolution was ascribed to crack closure and was related to the second derivative of the stress–strain curve. The porosity and permeability of Flechtinger sandstone were reduced by increasing the effective pressure and decreased after each pressure cycle.  相似文献   

2.
A model of wave propagation in fluid-saturated porous media is developed where the principal fluid/solid interaction mode affecting the propagation of the acoustic wave results from the conjunction of the Biot and the Squirt flow mechanism. The difference between the original Biot/Squirt (BISQ) flow theory and the new theory, which we call the reformulated BISQ, is that the average fluid pressure term appearing in the dynamic equation for a two component solid/fluid continuum is independent of squirt flow length. P-velocity and attenuation relate to measurable rock physical parameters: the Biot's poroelastic constants, porosity, permeability, pore fluid compressibility and viscosity. Modelling shows that velocity and attenuation dispersion obtained using the reformulated BISQ theory are of the same order of magnitude as those obtained using the original BISQ theory. Investigation on permeability effect on velocity and attenuation dispersion indicate that the transition zone in velocity and attenuation peak, occurring both at the relaxation frequency, shifts toward high frequency when permeability decreases. This behaviour agrees with Biot's theory prediction.  相似文献   

3.
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi-physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P- and S-wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny-shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies.  相似文献   

4.
致密砂岩普遍具有低孔、低渗及微裂缝发育的地质特征,并且呈现出很强的非均匀性.致密砂岩储层与常规砂岩储层比较,具有明显的岩石物理性质、渗流力学性质方面的差异.致密砂岩内部的非均匀性对弹性波频散、衰减有显著影响,其中包括孔隙结构的非均匀性,即岩石内部孔隙参数的不均一性,以及孔隙内部不相混溶流体的非均匀分布;此外,非均匀性的尺度也决定了波出现显著频散与衰减的频段.综合考虑致密砂岩孔隙结构非均匀性及流体斑块状饱和的非均匀性,本文采用双双重孔隙介质结构模拟了致密砂岩的弹性波响应,分析了同时具备两类非均质性岩石中的波传播特征.调查分析了两组分别来自中国鄂尔多斯盆地苏里格气田及四川盆地广安气田的不同类型致密砂岩储层的岩芯超声波实验数据,给出了岩石样本的弹性波速度频散与衰减曲线.结果显示理论模型预测结果与完全饱和、部分饱和岩石的实验数据吻合良好.对两个地区致密砂岩岩芯数据进行对比分析,苏里格致密砂岩样本总体上比广安致密砂岩渗透率高,在各孔隙度范围内,特征模拟显示苏里格样本的裂隙尺寸明显大于广安样本.广安致密砂岩在低孔隙度范围内发育了更多、更小的颗粒裂隙/接触.致密砂岩的速度频散与衰减结果受流体黏度、晶体破裂及流体斑块状饱和的共同影响.此外,孔隙度越大,部分饱和岩石中斑块状饱和机制对总衰减的贡献越低,与之相对,结构非均质性所占的比重则有所增强.  相似文献   

5.
砾岩储层地震波传播方程:三重孔隙结构模型   总被引:1,自引:1,他引:0       下载免费PDF全文
针对砾岩储层的砂、砾、泥三重孔隙结构特征,本文分析砾岩孔隙区域、砂岩孔隙区域以及泥岩孔隙区域相互之间的孔隙流体流动机制,将静态的砾岩骨架本构方程与动态的孔隙流体运动方程联立,提出了复杂砾岩储层的弹性波传播理论方程.采用实测砾岩储层参数,在算例中与双重孔隙介质理论进行对比分析,验证了本文理论方程的合理性;基于三重孔隙介质模型,分析不同储层环境下纵波的传播特征,结果显示:随流体黏滞系数增大,在衰减-频率轴坐标系中,砾与砂、砂与泥孔隙区域间局域流导致的两个衰减峰向低频端移动,而Biot全局流导致的衰减峰向高频端移动;嵌入体尺寸及背景相介质渗透率的变化,主要影响纵波速度频散曲线沿频率轴左、右平移,不影响波速低频、高频极限幅值;嵌入体含量及孔隙度的变化改变了岩石干骨架的弹性、密度参数,不仅影响速度频散曲线沿频率轴平移,而且影响其上、下限幅值;砾包砂包泥三重孔隙介质模型所预测的衰减曲线中,低频段"第一个衰减峰"主要由砾岩孔隙区域与砂岩孔隙区域之间的局域流导致,中间频段"第二个衰减峰"主要由砂岩孔隙区域与泥岩孔隙区域之间的局域流导致,超声频段"第三个衰减峰"由Biot全局流导致.对慢纵波传播特征的分析显示,砂岩骨架(局部孔隙度较大)内部的宏观孔隙流体流动造成的耗散明显强于砾岩与泥岩骨架.  相似文献   

6.
Increasing the damage and crack porosity in crustal rocks can result in significant changes to various key physical properties, including mechanical strength, elastic and mechanical anisotropy, and the enhancement of transport properties. Using a Non-Interactive Crack Effective Medium (NIC) theory as a fundamental tool, we show that elastic wave dispersion can be inverted to evaluate crack density as a function of temperature and is compared with optically determined crack density. Further, we show how the existence of embedded microcrack fabrics in rocks also significantly influences the fracture toughness (KIC) of rocks as measured via a suite of tensile failure experiments (chevron cracked notch Brazilian disk). Finally, we include fluid flow in our analysis via the Guéguen and Dienes crack porosity-permeability model. Using the crack density and aspect ratio recovered from the elastic-wave velocity inversion, we successfully compare permeability evolution with pressure with the laboratory measurements of permeability.  相似文献   

7.
When a porous layer is permeated by mesoscale fractures, wave-induced fluid flow between pores and fractures can cause significant attenuation and dispersion of velocities and anisotropy parameters in the seismic frequency band. This intrinsic dispersion due to fracturing can create frequency-dependent reflection coefficients in the layered medium. In this study, we derive the frequency-dependent PP and PS reflection coefficients versus incidence angle in the fractured medium. We consider a two-layer vertical transverse isotropy model constituted by an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce the intrinsic dispersion due to fracturing in the sand layer. Based on the series coefficients that control the behaviour of velocity and anisotropy parameters in the fractured medium at low frequencies, we extend the conventional amplitude-versus-offset equations into frequency domain and derive frequency-dependent amplitude-versus-offset equations at the elastic–anelastic surface. Increase in fracture length or fracture density can enlarge the frequency dependence of amplitude-versus-offset attributes of PP and PS waves. Also, the frequency dependence of magnitude and phase angle of PP and PS reflection coefficients increases as fracture length or fracture density increases. Amplitude-versus-offset type of PP and PS reflection varies with fracture parameters and frequency. What is more, fracture length shows little impact on the frequency-dependent critical phase angle, while the frequency dependence of the critical phase angle increases with fracture density.  相似文献   

8.
We study the propagation of elastic waves that are generated in a fluid‐filled borehole surrounded by a cracked transversely isotropic medium. In the model studied the anisotropy and borehole axes coincide. To obtain the effective elastic moduli of a cracked medium we have applied Hudson's theory that enables the determination of the overall properties as a function of the crack orientation in relation to the symmetry axis of the anisotropic medium. This theory takes into account the hydrodynamic mechanism of the elastic‐wave attenuation caused by fluid filtration from the cracks into a porous matrix. We have simulated the full waveforms generated by an impulse source of finite length placed on the borehole axis. The kinematic and dynamic parameters of the compressional, shear and Stoneley waves as functions of the matrix permeability, crack orientation and porosity were studied. The modelling results demonstrated the influence of the crack‐system parameters (orientation and porosity) on the velocities and amplitudes of all wave types. The horizontally orientated cracks result in maximal decrease of the elastic‐wave parameters (velocities and amplitudes). Based on the fact that the shear‐ and Stoneley‐wave velocities in a transversely isotropic medium are determined by different shear moduli, we demonstrate the feasibility of the acoustic log to identify formations with close to horizontal crack orientations.  相似文献   

9.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

10.
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid‐flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean‐field analytical model that shows how each modeled rock property depends on the nature of the crack population. The crack populations are described by a crack density, a probability distribution for the crack apertures and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. However, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.  相似文献   

11.
随着石油勘探工业的持续发展和技术水平的日益提高,低孔低渗油气藏已成为我国油气勘探开发的重要领域之一,但是该类油气藏的储层岩石物理关系复杂,对其评价也相对较难。本文针对中深层气藏低孔低渗储层评价存在的困难,采用修正的White气体包裹体模型开展岩石物理研究。首先对气体包裹体模型进行分析,得到纵横波速度的计算公式,进而理论计算并分析纵横波速度与孔隙度、饱和度、压力及温度参数的变化关系,最后结合岩心实验对理论计算结果进行了验证。研究结果表明基于气体包裹体模型的理论计算结果与实测数据吻合较好,可以较好地为低孔低渗复杂储层声波速度测量及解释提供技术支持。   相似文献   

12.
Differential effective medium theory has been applied to determine the elastic properties of porous media. The ordinary differential equations for bulk and shear moduli are coupled and it is more difficult to obtain accurate analytical formulae about the moduli of dry porous rock. In this paper, in order to decouple these equations we first substitute an analytical approximation for the dry‐rock modulus ratio into the differential equation and derive analytical solutions of the bulk and shear moduli for dry rock with three specific pore shapes: spherical pores, needle‐shaped pores and penny‐shaped cracks. Then, the validity of the analytical approximations is tested by integrating the full differential effective medium equation numerically. The analytical formulae give good estimates of the numerical results over the whole porosity range for the cases of the three given pore shapes. These analytical formulae can be further simplified under the assumption of small porosity. The simplified formulae for spherical pores are the same as Mackenzie's equations. The analytical formulae are relatively easy to analyse the relationship between the elastic moduli and porosity or pore shapes and can be used to invert some rock parameters such as porosity or pore aspect ratio. The predictions of the analytical formulae for experimental data show that the formulae for penny‐shaped cracks are suitable to estimate the elastic properties of micro‐crack rock such as granite, they can be used to estimate the crack aspect ratio while the crack porosity is known and also to estimate the crack porosity evolution with pressure if the crack aspect ratio is given.  相似文献   

13.
Fluids saturating cracked rocks within the crust can vary widely in composition and physical properties, which depend greatly on pressure and temperature. External non-hydrostatic stress applied to a cracked medium may result in a significant change of crack volume (and hence, for the undrained regime, pore-fluid pressure) due to the processes of crack closure (opening), and thus lead to a drastic change of the overall physical parameters of a rock. The purpose of the study is to estimate theoretically, using the effective-medium theory, the macroscopic seismic and transport parameters (such as permeability) of cracked rocks (granites) saturated with hydrocarbon gases, oils, brines and water. Variations of crack geometry and fluid parameters in the closed system (at constant fluid mass) under uniaxial compression are considered as well. The results show that composition of a saturating fluid as well as fluid temperature greatly influence the effective permeability and shear velocities of a rock mass, while thermal conductivity is not so sensitive to variations of fluid parameters.  相似文献   

14.
程卫  巴晶  马汝鹏  张琳 《地球物理学报》1954,63(12):4517-4527
地质成因和构造/热应力导致地壳岩石中的孔隙结构(裂隙和粒间孔)的变化.影响岩石黏弹性的因素包括压力、孔隙度、孔隙中包含的流体和孔隙几何形状等.相对于岩石中的硬孔隙,岩石黏弹性(衰减和频散)受软孔隙(裂隙)的影响更大.本文选取三块白云岩样本,进行了不同围压和流体条件下的超声波实验测量.利用CPEM(Cracks and Pores Effective Medium,裂隙和孔隙有效介质)模型获得了岩石高、低频极限的弹性模量,并通过Zener体(标准线性体)模型将CPEM模型拓展到全频带而得到CPEM-Zener模型,用该模型拟合岩石松弛和非松弛状态下的实验数据,本文得到平均裂隙纵横比和裂隙孔隙度以及纵波速度和品质因子随频率的变化关系.结果表明,饱水岩石的平均裂隙纵横比和裂隙孔隙度均高于饱油岩石,随着压差(围压和孔隙压力的差值)的增加,饱油岩石中的裂隙首先闭合.并且压差在70 MPa以内时,随着压差增大,岩石的平均裂隙纵横比和裂隙孔隙度在饱水和饱油时的差值增大,此时流体类型对于岩石裂隙的影响越来越显著,此外,对饱水岩石,平均裂隙纵横比随压差增加而增大,这可能是由于岩石中纵横比较小的裂隙会随压差增大而逐渐趋于闭合.在饱水和饱油岩石中,裂隙孔隙度和裂隙密度都随着压差增加而减小.通过对裂隙密度和压差的关系进行指数拟合,本文获得压差趋于0时的裂隙密度,且裂隙密度随孔隙度增大而增大,增大速率随压差增加而降低.针对饱水和饱油的白云岩样本,CPEM-Zener模型预测的纵波频散随压差增大而减小,此变化趋势和实验测得的逆品质因子随压差的变化关系基本一致,由此进一步验证了模型的实用性.本研究对岩石的孔隙结构和黏弹性分析以及声波测井、地震勘探的现场应用有指导意义.  相似文献   

15.
Measurement of complex electrical conductivity as a function of frequency is an extremely sensitive probe for changes in pore and crack volume, crack connectivity, and crack surface topography. Such measurements have been made as a function of pore fluid chemistry, hydrostatic confining pressure, as well as uniaxial and triaxial deformation. This paper will; (1) describe the effects of triaxial deformation on the complex electrical conductivity of saturated porous rocks, (2) use the electrical data to model the mechanical stress-strain behaviour, and (3) compare the modelled behaviour with the stress-strain behaviour measured during the deformation. Experimental conductivity data tracks how the rock undergoes compaction with progressive loss of crack volume, followed by dilatation due to new crack formation, growth of existing cracks, crack interlinkage, and finally failure, as axial strain is increased. We have used the complex electrical data to produce a direction-sensitive (anisotropic) crack damage parameter, and used it to calculate the effective Young's modulus by employing the models of Walsh and Bruner. Comparison of the synthetic stress-strain curves so produced, with the experimentally derived stress-strain curves shows good agreement, particularly for undrained tests. This modelling is an improvement on similar curves produced using isotropic crack damage parameters derived from acoustic emission data. The improvement is likely to be due to the directional sensitivity of the electrical conductivity measurement, and its ability to discriminate between the formation of isolated cracks, and those cracks that contribute to the inter-connected crack space i.e. those cracks upon which transport properties of the rock such as electrical conductivity, and mechanical properties depend most critically during triaxial deformation.  相似文献   

16.
地震波本征衰减反映了地层及其所含流体的一些特性,对油气勘探开发有重要意义.已有的理论研究与实验发现,地震频带内的衰减主要与中观尺度(波长与颗粒尺度之间)的斑状部分饱和、完全饱和岩石弹性非均匀性情况下波诱导的局部流体流有关.这种衰减与岩石骨架、孔隙度及充填流体的性质密切相关.本文着重讨论均匀流体分布、斑状或非均匀流体分布两种情况下部分饱和岩石的纵波模量差异.以经典岩石物理理论和衰减机制认识为基础,通过分析低频松弛状态、高频非松弛状态岩石的弹性模量,讨论储层参数(如孔隙度、泥质含量以及含水饱和度等)与纵波衰减之间的确定性关系.上述方法与模型在陆相砂泥岩地层与海相碳酸盐岩地层中的适用性通过常规测井资料得到了初步验证.  相似文献   

17.
Fractured rock is often modelled under the assumption of perfect fluid pressure equalization between the fractures and equant porosity. This is consistent with laboratory estimates of the characteristic squirt-flow frequency. However, these laboratory measurements are carried out on rock samples which do not contain large fractures. We consider coupled fluid motion on two scales: the grain scale which controls behaviour in laboratory experiments and the fracture scale. Our approach reproduces generally accepted results in the low- and high-frequency limits. Even under the assumption of a high squirt-flow frequency, we find that frequency-dependent anisotropy can occur in the seismic frequency band when larger fractures are present. Shear-wave splitting becomes dependent on frequency, with the size of the fractures playing a controlling role in the relationship. Strong anisotropic attenuation can occur in the seismic frequency band. The magnitude of the frequency dependence is influenced strongly by the extent of equant porosity. With these results, it becomes possible in principle to distinguish between fracture- and microcrack-induced anisotropy, or more ambitiously to measure a characteristic fracture length from seismic data.  相似文献   

18.
Hydrogeological parameter is an important index to characterize the hydrogeological properties of the aquifer, and has a clear physical basis and mechanism. Although the predecessors have made significant achievements in these areas, research is lacking on the changing law and relationship of the hydrogeological parameters of well-aquifer system. The digital water level and barometric pressure data of Dadianzi Well are used as the basis in this study. Based on the theories of elastic mechanics, rock mechanics and fluid mechanics, and using barometric pressure coefficient and tidal factor, the hydrogeological parameters in Dadianzi well-aquifer system in undrained conditions are studied. The corresponding water storage rate can also be obtained quantitatively. In addition, with the thickness of the aquifer, the pressure transmitting coefficient, the radius of the well and the frequency of the tidal wave, the permeability coefficient and transmissibility coefficient of well-aquifer system can be obtained, and the relationships between them are derived. The results show that: 1)There is an obvious power function relationship between porosity and solid skeleton volume compression coefficient, volume compression coefficient of water in aquifer, water storage rate, permeability coefficient and transmissibility coefficient. The volume compression coefficient of solid skeleton, water storage rate, permeability coefficient and transmissibility coefficient have a positive correlation with the porosity, the volume compression coefficient of water in aquifer decreases with increasing porosity. The volume compression coefficient of solid skeleton and water in aquifer can be well fitted to one of two quadratic polynomials. And the volume compression coefficient of water in aquifer is larger than the solid skeleton volume compression coefficient, water is more easily compressed. In addition, with the increase of water storage rate, the permeability coefficient and transmissibility coefficient also increase linearly; 2)Different from the traditional pumping test and indoor experiment, this paper uses the digital water level and other data, combined with the pressure coefficient and Venedikov tidal harmonic analysis results to access to the porosity, the volume compression coefficient of solid skeleton and water in aquifer medium, water storage rate, the permeability coefficient and the transmissibility coefficient. This method is simple and accurate.  相似文献   

19.
The electrical properties of rocks and minerals are controlled by thermodynamic parameters like pressure and temperature and by the chemistry of the medium in which the charge carriers move. Four different charge transport processes can be distinguished. Electrolytic conduction in fluid saturated porous rocks depends on petrophysical properties, such as porosity, permeability and connectivity of the pore system, and on chemical parameters of the pore fluid like ion species, its concentration in the pore fluid and temperature. Additionally, electrochemical interactions between water dipoles or ions and the negatively charged mineral surface must be considered. In special geological settings electronic conduction can increase rock conductivities by several orders of magnitude if the highly conducting phases (graphite or ores) form an interconnected network. Electronic and electrolytic conduction depend moderately on pressure and temperature changes, while semiconduction in mineral phases forming the Earth’s mantle strongly depends on temperature and responds less significantly to pressure changes. Olivine exhibits thermally induced semiconduction under upper mantle conditions; if pressure and temperature exceed ~ 14 GPa and 1400 °C, the phase transition olivine into spinel will further enhance the conductivity due to structural changes from orthorhombic into cubic symmetry. The thermodynamic parameters (temperature, pressure) and oxygen fugacity control the formation, number and mobility of charge carriers. The conductivity temperature relation follows an Arrhenius behaviour, while oxygen fugacity controls the oxidation state of iron and thus the number of electrons acting as additional charge carriers. In volcanic areas rock conductivities may be enhanced by the formation of partial melts under the restriction that the molten phase is interconnected. These four charge transport mechanisms must be considered for the interpretation of geophysical field and borehole data. Laboratory data provide a reproducible and reliable database of electrical properties of homogenous mineral phases and heterogenous rock samples. The outcome of geoelectric models can thus be enhanced significantly. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

20.
Summary An attempt has been made to study the mechanical response of rocks to stress waves using the Complex Modulus Apparatus. Natural resonant frequencies and the half-power relative band widths are determined experimentally in the frequency range 50–5000 c/s for a few igneous, metamorphic and sedimentary rock samples. Elastic and anelastic parameters, like the real part of the elastic modulus, loss factor, complex modulus of elasticity and percentage anelasticity, are evaluated and the interrelationships between them shown. Data on four synthetic materials like perspex, ebonite and laminated sheeting are reported besides the results on different rock types.RM-9/73.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号