首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一次梅雨锋低空急流形成的分析   总被引:5,自引:1,他引:5  
对1979年6月24—25日的一次梅雨锋低空急流的形成进行了分析,它的形成是由于在300mb高空急流中心附近产生的地转不平衡,使急流入口区的右侧造成高空辐散的作用。当高空急流中心东移,急流入口区右侧的高空辐散区移到江淮流域上空,由此高空辐散引起对流层下部的质量调整,致使低空造成降压区与辐合。这降压区造成的变压风迭加到低空的西南气流上,沿通过该负变压区(或负变高区)中心的西南气流作为一条轴线,轴线的右侧变压风使西南风偏向低压一侧,从而使西南风的动能增加;轴线的左侧变压风使西南风偏向高压一侧,从而使西南风的动  相似文献   

2.
王诗文  宋青丽 《气象学报》1983,41(2):223-230
本文以无辐散风(?)及无辐散风(?)与辐散风(?)之和分别作为初始风场,进行了数值天气预报试验,并且进行了比较。 1.无辐散风(?)的计算方法 取如下形式的非线性平衡方程  相似文献   

3.
辐散风作用下低频Rossby波的能量传播   总被引:3,自引:0,他引:3  
文中研究了热力强迫所激发的辐散风对低频Rossby波能量传播的影响 ,推导出辐散风作用下的Rossby波的频散关系和群速度表达式。理论分析表明 :如果扰动流函数与速度势的位相差α∈ (0 ,π) ,那么辐散风将减小Ross by波的圆频率 ,增大群速度的纬向分量 ,加速Rossby波在纬向方向上的传播 ;辐散风对经向群速度的影响是比较复杂的。波射线的分析表明 ,在纬向基本气流为常数的情况下 ,辐散风作用下的低频Rossby波从初始位置到反射纬度的传播路径表现为一段光滑的大弧 ;对于周期为 30d、纬向波数k =3,4的Rossby波 ,当辐散风减弱时 ,波能量经向传播距离和纬向传播距离都增大。对于k =3的Rossby波 ,当辐散风减弱时 ,Rossby波的经向传播范围增大 ,但振幅强度减小。  相似文献   

4.
浙江海岛台风和冬季大风阵风特征的对比分析   总被引:3,自引:1,他引:3  
为了提高阵风预报准确率,利用2006—2016年浙江7个海岛气象站资料和ERA-interim资料,分析了台风和冬季大风的阵风因子与10 m稳定风速、风向、Brunt-Vaisala频率、总体理查逊数、边界层250~1 000 m风速及其与10 m稳定风速比值等的关系,对比两种大风系统阵风的主要成因差异,最后对冬季大风的阵风因子进行拟合。(1)从总体上,台风阵风因子比冬季大风要大0.1~0.2,波动幅度也一般比冬季大风偏大0.3~0.5。有些站点在稳定风速较大时,阵风因子随稳定风速变化不明显,而有的站点变化幅度较大。(2)站点不同方位的地表特征差异明显,导致台风和冬季大风的阵风因子在某个风向上有较统一的最大值和最小值,两者差值一般为0.2~0.3。(3)大气边界层台风样本主要表现为气流辐合上升及正涡度,而冬季大风样本主要表现为辐散下沉及负涡度,台风垂直速度、涡度和散度的强度均明显大于冬季大风样本;从Brunt-Vaisala频率来看,边界层750 m处冬季大风样本总体为静力不稳定,而台风样本总体为静力稳定;从总体理查逊数来看,台风样本和冬季大风样本两者边界层250 m处动力不稳定程度接近。(4)台风和冬季大风的阵风主要形成机制不同,冬季阵风与边界层上层气流向下动量传输引发的辐合辐散有关,而台风阵风可能更多与边界层气流的水平动量输送引发的辐合辐散有关。(5)基于风向、边界层1 000 m处风速和10 m稳定风速的冬季大风阵风因子的拟合模型,比仅考虑10 m稳定风速的拟合模型的绝对误差减少了20%~50%,误差方差也减少了10%~30%。   相似文献   

5.
利用NCEP/NCAR水平分辨率为1°×1°、逐6 h的分析资料,以及JTWC(美国联合台风预警中心,Joint Typhoon Warning Center)最佳TC路径资料,对2004—2010年5—9月北半球100°E~180°范围内,118例TC生成时刻周围系统辐散风的大小以及时间和空间分布特征进行了统计分析,根据作用系统的不同将TC分为7种类型,其中:1)越赤道气流型;2)越赤道气流和副高相当型;3)越赤道气流强,副高弱型;4)副高型,这4种类型最多,占总数的91.5%以上。以TC为中心,在新生TC闭合环流外500 km范围内,第Ⅰ象限为副高的影响,在第Ⅱ象限多为副高与大陆高压影响,第Ⅲ象限为越赤道气流影响,而在第Ⅳ象限多为越赤道气流影响,少数为副高影响。区域平均越赤道气流辐散风的影响强度在0.7~3.5 m·s~(-1)的范围内,副高辐散风的影响强度在0.6~1.5 m·s~(-1)的范围内。对0704号的控制试验和敏感性试验表明,去掉TC自身的作用后,仍然会在一段时间后生成新的TC,这也验证了周围系统对TC的生成有重要的作用。  相似文献   

6.
地形与Ekman边界层中的气流   总被引:1,自引:3,他引:1  
伍荣生 《气象学报》1989,47(2):137-146
利用σ坐标讨论地形与边界层气流是有很多方便的地方,因为,在此坐标中,下边界条件较为简单。在本工作中,首先将混合长理论加以推广并将它用于σ坐标,于是导得了用以描述地形上空边界层气流的控制方程,对边界层气流的特征,特别是对于Ekman抽吸作用进行了详细分析。指出有三种因子影响边界层顶部的垂直运动,第一种因子是边界层内涡度分布,这是与边界层中由于摩擦作用所引起的辐合辐散有直接联系;第二种因子是由于边界层顶部的气流爬坡运动所引起的;第三种是由于边界层中跨越等压线的分量爬坡所引起的,它出现于当等压线与地形等高线相平行时,或地转风呈现绕流情况时,这一作用最为明显。  相似文献   

7.
在第(一)部分的基础上,进一步讨论辐散风动能和旋转风动能的收支以及这两种动能之间的转换过程。结果表明,尽管辐散风动能在总动能中所占比重很小,但它的变化与强对流天气过程的发生发展有着更为密切的关系。计算结果表明,在辐散风动能与旋转风动能的转换函数{KD,KR)中,B项(代表垂直运动与旋转风动能的垂直变化的耦合)是最大的转换项;在强对流区,反映涡管伸缩机制的A项也是一个很重要的转换项。就区域时间平均而言,有旋转风动能向辐散风动能(KR→KD)转换。   相似文献   

8.
1979年5月东南亚夏季风的建立和青藏高原的作用   总被引:9,自引:3,他引:6  
杨辉  宋正山  朱抱真 《大气科学》1998,22(6):858-866
东南亚夏季风开始于5月,它是大气环流向夏季环流过渡的一个重要阶段。本文用FGGE-IIIb全球网格点资料,分析1979年4月26日到5月25日,大范围(40°S~50°N,30~160°E)温度、湿度和风场变化特征,计算了垂直速度、辐散风场、热源和水汽汇收支,研究了东南亚夏季风的性质和来源,其中着重分析了青藏高原的热力和动力作用与东南亚夏季风建立的关系。东南亚夏季风建立的主要因素是中纬度的环流形势,来自热带海洋的西南气流和青藏高原的作用。东南亚夏季风开始时,高空大气环流发生调整,青藏高原上空为波脊,两侧为波槽。低空东南亚夏季风区的辐合气流有四个来源:1)同经度范围的偏南辐散风,2)高原南侧的偏西辐散风,3)高原东侧的偏北辐散风,4)西太平洋上的偏东辐散风。分析表明,东南亚夏季风降水受高原西南侧的中纬度西风带波动影响。低空西南气流来源于80~120°E的南半球热带地区,西南气流输送水汽并且加强低空辐合。主要的热源位于东南亚,主要是潜热释放形成的,它是驱动东南亚夏季风环流的主要机制。整个分析期,青藏高原是一热源,抬升的感热加热和动力作用形成和维持了高原上空的高压脊和两侧的波槽,从而有助于东南亚夏季风的建立。  相似文献   

9.
吕克利 《气象学报》1984,42(2):157-167
文中利用时间边界层概念研究了大气运动中的快过程,发现:对的大尺度运动,在时间上可以区分为静力适应过程,地转适应过程及水平无辐散适应过程三个快过程,以静力适应过程为最快,地转适应过程次之,水平无辐散适应过程最慢。对L=L_0的大尺度运动,静力适应过程仍为最快,地转适应过程与水平无辐散适应过程在时间上已难以区分。对L相似文献   

10.
基于常规气象观测、浙江省自动气象站、宁波多普勒雷达和凉帽山岛370 m高塔边界层资料,对宁波市2012年7月7日(个例1)和2013年3月22日(个例2)两次冰雹过程进行了比较分析,结果表明:两次过程发生在不同季节和天气背景下,个例1由强热对流单体所致,个例2则是具有高架雷暴特征的移动性强对流带所造成。地面流场都显示:雹暴前侧入流辐合带和后侧下沉气流辐散区相对雹暴中心位置变化不大,两次过程前部冷出流边界前沿距离降雹中心约8~10 km及其后约4 km处形成了下沉尾涡。雹暴前侧入流区边界层主要表现为气压下降、气流转向雹暴中心、风速及辐合加大等;而下沉辐散区则表现出天气要素的剧烈变化。个例1高塔处于冰雹前侧入流区,边界层气象要素变化低层先于高层,临近降雹时由于拖曳作用削弱了抽吸作用,近地层各气象要素均有短时间的反向变化。个例2高塔处于低层入流区时,风速增大也最先出现在塔层底部;雹暴过境时,冷高压出流造成高塔处边界层风向、风速剧烈变化,上下各层时间较一致。  相似文献   

11.
“苏拉”台前强螺旋云带辐合特征分析   总被引:1,自引:1,他引:1  
徐亚钦  夏园锋  翟国庆  黄艳 《气象》2018,44(10):1275-1285
为了研究爆发式发展的台风苏拉台前强螺旋云带,采用多种实况资料,运用风场分解、Shuman-Shapiro滤波、雷达回波相关性跟踪(TREC)反演风场等方法对其辐合特征进行分析。结果表明:从中尺度滤波场、变风场以及风场分解后的辐散风可见,螺旋云带形成于大范围辐合背景下。在低层,旋转风是水平动能输入的主要贡献者,它加强了低层动量堆积,辐散风则加强了风场水平辐合;在高层,辐散风是动能输出的主要贡献者,辐散风的增强,加强了高空辐散。旋转风和辐散风的不同配置形成了强上升运动,从而促进了强螺旋云带的发展。对地面风场进行中尺度滤波后,在选取的两个关键区内可见明显的中尺度辐合或涡旋,且辐合在更高层仍有一定的反映。中小尺度辐合与螺旋云带中对流云团的发展相互对应、相互反馈。  相似文献   

12.
夏季绿洲气候效应的观测和数值模拟   总被引:2,自引:2,他引:2  
利用“金塔绿洲能量水分循环观测试验”的资料和中尺度数值模式对绿洲小气候效应进行了17天较长序列的研究,在模拟过程中每天替换土壤湿度。研究结果表明:在分析时段内2004年7月6目前和9日后分别盛行西北风和东风两种背景风;白天,绿洲低层相对沙漠是一个冷源,随着高度的增加逐渐转为暖中心,温度场在600~700hPa之间转变。当背景风较大时,绿洲上空的温度中心会偏向绿洲中心下游。白天绿洲低层风场平均态为在东风背景场的基础上向南北两侧辐散,随着高度的增加风场逐渐由辐散转为向绿洲的辐合,转变高度在700hPa以下,且低于温度场的转变高度。白天绿洲上以下沉运动为主,绿洲风次级环流是绿洲上夏季晴天长期存在的平均态。当背景风较小时绿洲低层可形成向四周辐散的风场,当背景风场过大时,无绿洲环流生成。绿洲为高湿场,在绿洲边缘沙漠上存在的逆湿和高水汽柱,既阻止沙漠上干热气流侵入绿洲,又防止绿洲上水汽的流失。白天沙漠、绿洲的地表能量通量差异较大,绿洲上以潜热为主,沙漠上以感热为主,二者量级相当。绿洲上的边界层高度低于沙漠的,对绿洲生态系统起一定的保护作用。  相似文献   

13.
气溶胶对东亚冬季风影响的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
利用NCAR/UCAR CAM5.1模式研究气溶胶对东亚冬季风的影响。模式从1991—2010年运行20年,取2001—2010年冬季的结果。模式结果可以较好地再现东亚冬季风的主要特征。试验结果表明:气溶胶增加使我国东南部地区和东北亚地区(35°~55°N,115°~150°E)冬季风减弱,同时,造成我国东南部地区降水减少。其中,热源热汇的变化和无辐散风减弱为主要原因。气溶胶增加改变了大气热源的分布,造成在我国东南部地区热源减弱,热汇加强;我国东北地区热汇减弱,日本列岛热源加强;气溶胶增加使这些区域全位能的产生减弱,消耗加强。同时,凝结潜热的变化主要影响热源和热汇,其中大尺度过程产生的凝结潜热变化起主要作用。在我国东南部和东北亚地区辐散风动能向全位能的转换增加,造成辐散风减弱。故该区域辐散风向无辐散风的转换减弱,导致无辐散风减弱,最终造成东亚冬季风减弱。  相似文献   

14.
冬季城市边界层风场和温度场结构分析   总被引:15,自引:1,他引:15  
桑建国  刘万军 《气象学报》1990,48(4):459-468
本文根据沈阳地区大气环境容量研究中1984年12月所进行的观测,对沈阳城市边界层的流场和温度场结构做了分析。得出了冬季城市边界层的一些特征。当地面风速微弱时,热岛效应显著。边界层低层辐合抬升,在城市下风边缘可能出现反向气流。当风速较强时,城市的摩擦效应占优势,城市上风部分辐合抬升,下风部分辐散下沉。观测分析还表明,城市建筑对气流的阻滞作用可伸展到几百米的高度。夜间微风时,接地逆温层厚度可达200m,城市内边界层从上风边缘起开始发展,厚度可达100m。白天风力微弱时,重烟尘污染可导致城市冷岛,并推迟对流边界层的发展。  相似文献   

15.
为了在缺少雷达观测的地区开展对流临近预报,利用光流法和半拉格朗日外推法进行了卫星云图外推实验,同时利用无辐散约束改进光流矢量来避免云图辐散失真。(1) 光流法反演的风场能够准确反映出台风涡旋环流结构,采用半拉格朗日方案进行外推,可以保持云系的旋转特性,具有良好的稳定性和精度,但随着外推时间的增加光流矢量中的噪声会导致云图辐散失真。(2) 无辐散约束减少了风矢量杂乱无序现象,弥补了缺失的光流,还能对风速进行平滑,使风速空间梯度更平滑。(3) 用改进后的风场进行外推,避免了云系辐散失真,在保持其形态不被破坏的同时,还能减少云团TBB虚假增长。(4) 检验表明改进后的外推预报方案,具有更小的平均绝对误差,MAE提高了4%,临界成功指数提升了9%。  相似文献   

16.
影响台风移动因子的数值研究   总被引:1,自引:1,他引:0  
本文采用有辐散的正压原始方程模式对影响台风涡旋移动的因子进行了数值试验,试验结果表明:(1)在无环境风条件下,台风涡旋向西北方向移动,移速与台风切向风速、台风半径和台风区f场的特征有关,台风外区(指最大风速半径以外台风区域)切向风速越大、台风半径越大,台风涡旋移速向北分量越大。(2)均一环境风场中,台风移动受基本气流的平流、β效应和指向引导气流左侧的横向加速度的作用,其中基本气流的引导作用是主要的。台风移速与引导气流速度比在东风气流中要大于西风气流中,而台风移向与基本气流之间的偏角在西风气流中要大于在东风气流中。(3)台风涡旋有沿基本气流绝对涡度梯度方向的次级运动分量。(4)台风涡旋在有切变的西风气流中比在均一西风气流中易发展加强,而它的移动更偏向引导气流的左侧。   相似文献   

17.
用滤波方法对两次强风暴天气过程进行尺度分离,得到与强风暴天气区相对应的中尺度扰动流场,分析结果表明:(1)强风暴天气—般出现在前期的层结不稳定区域内非热成风的大值中心附近。(2)在强对流的活跃阶段,在行星边界层的较下部和对流层的中部,分别有一无辐散层;从地面往上,辐散辐合依次相间出现;在强对流区的上空,存在明显的中尺度辐合和辐散中心。 此外,文中对中尺度扰动和强对流天气的成因作了初步讨论。   相似文献   

18.
利用NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research)2001-2010年再分析资料,检验了全球气候系统模式CESM中大气模块CAM (Community Atmosphere Model)对亚洲夏季风和大气热源的模拟能力。结果显示,模式可以再现亚洲夏季风和大气热源的主要特征。通过敏感试验探讨人为气溶胶影响亚洲夏季风的机理,分析、讨论了气溶胶引起的非均匀加热的变化对辐散风和无辐散风强度的影响,在机理上解释了亚洲夏季风减弱的原因。结果表明,人为气溶胶浓度的升高使东亚夏季风强度在中国东南地区、中南半岛北部和印度半岛北部减弱。而中国东南部季风的减弱促使中国内陆降水减少,沿海降水增多。进一步分析人为气溶胶浓度升高的作用发现,其改变了大气热源的分布,造成阿拉伯海、孟加拉湾和中国南海大气热源增强,中国东部地区和中南半岛大气热源减弱,其中气溶胶通过影响凝结潜热来改变大气热源,主要是对对流过程的影响。此外,大气热源分布的变化改变了季风区的热力结构,使中国东南地区、中南半岛北部的加热减弱,从而减少了全位能的产生,使得全位能向辐散风的转换减小,辐散风减弱;同时,中国东南部、中南半岛北部季风由于辐散风向无辐散风转换的减弱,无辐散风减弱,最终导致了夏季风强度的减弱。而且,人为气溶胶对亚洲夏季风的影响主要通过大气热力和动力过程的响应产生作用。  相似文献   

19.
利用ECMWF资料对2001年6月1~5日东移出高原的低涡个例的动力结构进行了诊断分析。结果表明:(1)低涡东移过程中,闭合等高线或者闭合气旋式环流的垂直厚度随时间呈加厚趋势;(2)高原低涡在东移过程中,垂直方向上几乎都是正涡度,500hPa上正涡度随时间呈增强趋势;(3)在高原上时涡区明显低层辐合、高层辐散;移出高原后表现为微弱的低层辐合、高层辐散,甚至低层辐散、中层辐合、高层辐散。(4)处于高原上时涡区整层都为上升运动,移出高原以后上升运动微弱,中低空经常为下沉运动。(5)低涡处于高原上时,涡区在边界层始终有水汽辐合,移出高原以后在低空只有微弱的水汽辐合甚至辐散。涡区外围东南侧的槽前脊后区存在低空急流,是水汽通量和水汽辐合的大值区。   相似文献   

20.
利用中尺度数值模式MM5,替换了模式第三重嵌套模拟域中金塔绿洲及周围地区与实际不符的植被类型,对2004年7月5日金塔绿洲效应进行了较为成功的模拟。模拟结果显示:白天绿洲是一冷源,这一现象可维持到3000m左右,临近地面沙漠绿洲温差最大,冷中心强度由低层向高层逐渐减弱;气压距平场低层为沙漠低,绿洲高,较高层则反之,转变发生在1300m。低层绿洲风盛行,随高度增加,辐散风渐弱;750hPa以上转为以背景风为主,存在向绿洲中心辐合的趋势;距平风场低层为辐散风,高层为辐合风,绿洲中部风速较小,越远离风场辐散(辐合)中心,风速越大;沙漠上为上升气流,绿洲基本上全为下沉运动所控制,但剖面图上显示绿洲上并不是只有一个闭合中心,且绿洲上、下沉运动的顶部高度也不一致,绿洲中心最低,两侧逐渐增高。最大下沉运动出现在绿洲边缘;绿洲低层分布着强度均匀的辐散区,而沙漠上则为零散辐合区,750hPa辐合区开始侵入绿洲,700hPa时绿洲基本为辐合区,绿洲边缘辐合最强,沙漠以辐散为主,分布少许辐合中心。比湿同湿位温具有相似特征,在一定高度以上,在下沉气流的作用和西风背景场的影响下等值线形成低槽形状,低槽中心从高层向低层、由西向东偏移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号