首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
我国深层煤层气资源储量丰富,但煤储层改造工艺技术与深层地质条件匹配耦合性问题亟需解决。为探究深层地质条件下煤储层改造技术,以大宁–吉县区块为地质背景,从该区块深层8号煤层岩石力学参数角度对体积压裂可行性进行评价,并采用室内三轴酸压物模实验进行验证。基于室内实验的基础上,针对此区块8号煤层特征,提出采用“高排量、低酸量、适中砂比”体积酸压工艺技术,并配合“交替注酸、分段加砂、变排量注入”复合工艺。基于此工艺原理开展复合盐酸、氨基磺酸体积压裂现场试验。结果表明:现场11口产气井日产气量累计达20 469 m3,其中10口生产直井最高产气量可达5 791 m3/d;1口生产水平井投产后日产气最高1.1万m3,同时体积酸压工程因素(排量、加液强度)与裂缝监测破裂面积存在较好相关性。提出应进一步提升压裂液排量且应优选在11~15 m3/min;应减小整体用酸量,同时进一步优选酸液浓度;优选低密度支撑剂并优化加砂工艺以提升加砂规模;清洁压裂液加液强度优选在150~250 m3/m;同时应提升配套设备质量,例如提升套管钢级,优化压裂设备等。研究从体积酸化压裂工程角度为该区块及类似地质条件下深层煤层气的勘探开发提供了技术借鉴。   相似文献   

2.
煤储层含气量是煤层气开发的核心参数,但实测煤储层含气量与煤储层的真实含气量之间往往存在误差。基于窑街矿区海石湾井田煤层气井不同时段的产气量,以煤储层含气量“定体积”降低为基础,反演煤储层实时含气量,研究煤层气井排采过程煤储层实时含气量的变化规律。结果表明:煤储层含气量随排采时间呈线性下降趋势,不同步长煤层气井产气量与煤储层含气量降低幅度一致,遵循“定体积”产气特征,即煤层气单井产气量是煤基质“定体积”产出;煤层气井的产气量与含气量降低速率有关,而与煤储层原始含气量无关。煤储层为隔水层,水力压裂难以改变煤基微孔隙通道的结合水状态,CH4产出过程受水–煤界面作用控制,煤层气产出是“CH4·煤·水”三相界面传质作用的结果,水–煤界面作用中水的湍动提供并传递能量,激励块煤中CH4解吸与产出。   相似文献   

3.
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy, especially as fossil fuels approach depletion, energy consumption soars, and fossil fuel prices rise, owing to their extensive distribution, abundance, and high fuel efficiency. Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle, containing most of the world’s methane and accounting for a third of Earth’s mobile organic carbon. We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates, such as temperature, pressure, and heat flow, based on related data collected by the global drilling programs. Hydrate-related areas are estimated using various biological, geochemical and geophysical tools. Based on a series of previous investigations, we cover the history and status of gas hydrate exploration in the USA, Japan, South Korea, India, Germany, the polar areas, and China. Then, we review the current techniques for hydrate exploration in a global scale. Additionally, we briefly review existing techniques for recovering methane from gas hydrates, including thermal stimulation, depressurization, chemical injection, and CH4–CO2 exchange, as well as corresponding global field trials in Russia, Japan, United States, Canada and China. In particular, unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada, most gas hydrates in the northern South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology. Therefore, especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea, Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials: solid fluidization and formation fluid extraction. Herein, we introduce the two production techniques, as well as the so-called “four-in-one” environmental monitoring system employed during the Shenhu production test. Methane is not currently commercially produced from gas hydrates anywhere in the world; therefore, the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones. Before achieving commercial methane recovery from gas hydrates, it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques. Herein, we propose horizontal wells, multilateral wells, and cluster wells improved by the vertical and individual wells applied during existing field trials. It is noteworthy that relatively pure gas hydrates occur in seafloor mounds, within near-surface sediments, and in gas migration conduits. Their extensive distribution, high saturation, and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future. Herein, we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques. In the closing section, we discuss future research needs, key issues, and major challenges related to gas hydrate exploration and production. We believe this review article provides insight on past, present, and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.  相似文献   

4.
煤层气生产过程中,需要随时了解和掌握煤层气井的产水、产气、液面高度等各项参数,以便根据生产阶段的需要及时调整生产参数,使煤层气井的生产处于最佳状态。目前国内煤层气抽采过程中仅能单独测量压力、温度、液位等参数,并不能检测每个层位的产气产水量,因此为了达到长期同时监测不同层位煤层的目的,设计了煤层气井流体原位实时监测仪。该监测仪不仅能测量温度、压力等参数,还可结合地面测得的气、水流量,分别得出不同层位煤层的产气产水量,为煤层气开采方法的确定提供科学依据,有利于提高煤层气抽采率。   相似文献   

5.
沁水煤层气田高阶煤解吸气碳同位素分馏特征及其意义   总被引:3,自引:0,他引:3  
沁水盆地是我国煤层气勘探开发的重要有利区,沁水煤层气田位于盆地东南部。对采自沁水煤层气田两口井的煤开展了罐解吸实验。结果表明,该地区煤层气解吸速率很快,96 h后解吸气量都达到了总解吸气量的60%~85%,720 h后解吸过程基本结束;解吸气量大,平均在18 m3/t以上。煤层气解吸过程中甲烷发生碳同位素分馏,δ13C1值变化与解吸率呈良好的线性关系,参考这种正相关关系曲线,定期监视煤层气降压排采过程中甲烷δ13C1值的变化情况,可以大致推测出该地区煤层气解吸率,从而预测煤层气的采出程度。跟踪测试沁水煤层气田A1和A1-3井在试采过程的甲烷δ13C1变化情况,推测现在采出的煤层气可能主要是煤层裂隙中以游离形式存在的煤层气,表明该区煤层气稳产性较好,资源前景广阔。  相似文献   

6.
林南仓属于低瓦斯矿井,但存在高瓦斯区域。煤层和采空区是瓦斯的主要来源,尤以采空涌出量大,给煤矿生产和安全带来了极大隐患。通过在1129综采工作面风道施工高位瓦斯孔,把钻孔打到采空区一侧煤层顶板以上冒落裂隙带内,用钻孔进行瓦斯抽放,使采空内的瓦斯通过裂隙带沿钻孔抽出,有效降低综采工作面瓦斯浓度,保证综采工作面正常回采和安全生产。  相似文献   

7.
董凤娟 《地质与勘探》2023,59(3):657-663
随着致密气田的深入开发,低产低效井逐年增加,已经成为制约气田开发的关键问题之一。以苏里格气田某区块30口气井为研究对象,引入产量贡献率作为动态分类指标,运用气井产量贡献率累计分布曲线的类分割点将气井划分为4类。以纵向合采砂体数、有效砂体厚度、孔隙度、渗透率和含气饱和度等参数作为静态评价指标,采用熵权-理想点法,对气井进行静态分类。基于动态和静态分类结果,引入自相关距离判断异常值点,进行低产低效气井优选。研究表明,Ⅰ、Ⅱ、Ⅲ、Ⅳ类气井的储层质量依次变差,累计产量依次减小;4口气井为低产低效井,优选结果符合生产实际。该研究成果可为气田进一步挖潜的选井、选层提供一种新的技术途径。  相似文献   

8.
In the process of working face advance in longwall coal mining, a great deal of gas relieved by the strata adjacent to the mining coal seam and the residual coal in gob migrates to gob. If the gas drainage method in gob is unreasonable, gas will accumulate in the upper corner and overrun in the return air flow. In the paper, a CFD (computational fluid mechanics) model of gob based on the actual geological conditions and gas drainage mode of 1262 working face of Dingji Coal Mine, China, was established. The gas drainage modes that should be taken to effectively control gas accumulation in the upper corner and gas overrun in the return air flow at different gas emission rates were discussed. The simulation results show that when the gas emission rate in the working face is lower than 20 m3/min, buried pipe drainage can effectively control gas accumulation in the upper corner and gas overrun in the return air flow. When gas emission rate there is between 20 and 30 m3/min, the two problems can be solved through cross-measure borehole drainage combined with buried pipe drainage. When gas emission rate there is higher than 40 m3/min, they can be effectively controlled through a three-dimensional drainage mode including buried pipes, cross-measure boreholes, and surface wells. Arranging surface wells within the fractured zone near the return airway can increase the gas drainage rate, and the gas concentration can reach over 85%; the gas concentrations of buried pipe drainage and cross-measure borehole drainage are 15~20% and 70~80%, respectively.  相似文献   

9.
为了降低晋城岳城矿工作面U型通风造成的上隅角瓦斯聚集,提高采动与采空区煤层气地面井抽采井产量及抽采寿命,在借鉴成庄矿、寺河矿和赵庄矿等地面采动试验井研究及工程示范的基础上,以晋城岳城矿煤层气地质条件为工程设计依据,提出并优化地面采动区井位尽量靠近巷道位置处、大井眼地面钻井工艺、优化井身结构等设计方案.现场试验证明:部分...  相似文献   

10.
含气量是影响煤层气井生产的关键参数,但是,多数煤层气井无法直接获得目标煤层含气量,且解吸法测定的低阶煤储层含气量误差较大。文章以大佛寺井田煤层含气量动态变化特征为研究目标,结合煤层气井排采数据对煤储层参数动态的同步反馈,采用“定体积法”分析煤层气井排采数据,进行4#煤储层实时含气量的动态反演。结果表明:(1)设定多个原始含气量,实时含气量随时间变化呈线性递减关系,且下降趋势一致,皆能得到实时含气量变化线性斜率相同的结果:产气量与含气量消耗同步,且与生产时间间隔无关。(2)分析1 d、3 d、5 d的不同时间步长,设定原始含气量分别为2 m3/t、3 m3/t、4 m3/t、5 m3/t、6 m3/t、8 m3/t时,煤储层实时含气量变化关系高度一致,认为煤层气井遵循“定体积”产气规律,即不存在压降漏斗的形成与扩展。(3)连续排采阶段,实时含气量与排采时间呈线性降低关系,排采间断前后两个阶段煤储层实时含气量线性降低速率不同:为-0.00546和 -0.00435;第二阶段较第一阶段实时含气量变化斜率减小,是因为排采过程产生煤粉,堵塞阻碍块煤的解吸作用,造成储层伤害,能够解吸的煤层体积缩小。  相似文献   

11.
煤层气井排采历史地质分析   总被引:8,自引:0,他引:8  
根据晋城、潞安、焦作、铁法4个矿区25口煤层气生产试验井的排采资料,从煤储层渗透性和含气饱和度、生产压降条件、地下水系统、储层能量系统等方面综合分析研究,将排采曲线归纳为4种具有代表性的类型。认为煤储层渗透率0.5mD以上、临储压力比0.6以上以及含气饱和度80%以上,是获得高产煤层气井的必要储层条件。同时,煤储层和围岩的不同组合。将直接影响煤层气井的生产状况。  相似文献   

12.
针对目前煤矿"先抽后建"提出的安全指标及贵州黔北矿区多煤层的资源特征,同时弥补目前地面抽采部署缺乏系统性、盲区大的问题,以贵州对江南煤矿为例,进行了煤层气地面抽采井位部署研究。综合该区复杂的地形条件、煤层发育特征(层数多、厚度薄、成群分布)、煤体结构及开发部署要求,优选出分段压裂水平井为主、丛式井为辅的开发方式。沿着1、2号采掘工作面分别部署了4个水平井组和16个垂直井(丛式井),占地7个井场。通过精细化地质模型建立、网格划分,利用CBM-SIM数值模拟软件模拟了20口井(井组)5 a地面抽采效果平均日气量可达26 036.54 m3,地面抽采5 a后1、2号工作面内M78煤层气含量降幅超过30%。模拟结果显示,对江南煤矿的精细化井位抽采部署,有效降低了采掘工作面瓦斯含量,兼顾煤矿安全生产和煤层气资源利用的双重目的。该方法可为煤层气地面抽采及煤矿井下采掘安全协同发展,提供新思路、新方法。   相似文献   

13.
直井开发煤层气钻井和压裂成本高,控制面积小,单井产气量低;煤层内水平井钻进难度大,风险高,薄煤层中井眼轨迹控制难度大,钻井液有害固相对储层伤害严重,采收率低。基于此,分析贵州织金区块煤系地质构造,提出在煤系地层内稳定的非储层内布水平井,通过压裂造缝沟通水平井上下煤层同时开发多层煤层的新思路。与常规开发方式相比,非储层内水平井具有钻井风险小、储层伤害小、单井产量高的优点,同时还可以开发煤系致密气和页岩气,提高非常规天然气利用率。研究非储层内水平井开发贵州织金煤层气技术,为解决贵州煤系地层煤层多而薄、层间距小等特性煤层气开发难题以及综合利用煤系气提供新的方式。  相似文献   

14.
沁水盆地南部煤层气井具有“高产水、低产气”的特征,然而也有部分井存在“高产水、高产气”的现象。一般来说,煤层气井高产水,多与沟通含水层相关。针对这种情况,基于沁水盆地柿庄南区块煤储层地质条件,结合煤层气直井排采的实际情况,利用数值模拟方法,采用气水两相多组分的三维煤储层模拟软件(SIMEDWin)模拟煤层气井排采中,沟通无越流补给含水层对储层压力变化及煤层气水产出规律的影响。结果表明:与无含水层影响的煤层气井对比,沟通无越流补给含水层的煤层气井远井地带压降幅度显著,高产气时间久,累积产气量多,排水量大,但见气时间较晚;含水层渗透率越大,气井日产气峰值越高;气井日排水量越大,产气速度也会越快,但产气速度在排水量达到一定值时不再增大。综合考虑,沟通无越流补给高渗透率含水层,增大日排水量到一定值更有利于柿庄南区块煤层气的增产。   相似文献   

15.
透镜状水驱气藏是一种不同于中深层构造气藏的零散气藏。为了获得最佳的经济效益,实施了不同开发阶段的综合油藏管理。在开发初期实施了以地质综合研究为基础、“亮点”、“AVO”等为核心的气藏地震勘探描述、以气藏工程研究为主要手段的滚动勘探开发一体化技术,以提高钻井成功率。在开发中期,为了延长气田稳产期则主要是加强气藏动态分析,适时进行开发调整。而进入开发后期,则应实行气井的分类管理,以提高采收率为目的,以研究剩余气的分布规律为突破点,充分利用地质及动态资料实行精细气藏描述。在开发过程中,始终从气层保护出发,探索研究配套工艺措施,目的是提高气井产能,延长气田无水采气期。综合油藏管理的应用,有效地提高了透镜状水驱气藏的最终采收率,大大提高了气藏的开发效益。同时,对其它类型气藏的开发也具有一定的借鉴意义。  相似文献   

16.
为了查明河南省不同构造区内二1煤层中气体的流动特征和煤体受构造变形分异后的独特性,采用实验数据分析、瓦斯地质和渗流学理论,研究煤中孔容分布、孔径受应力影响后的变化以及煤体强度受构造应力作用下的变形和破坏特点。结果表明,煤层中甲烷连续流型占优的排序为:太行构造区、崤熊构造区、嵩萁构造区。煤中甲烷流型差异受区域构造变形体制控制,太行构造区的拉伸变形导致煤体强度值域分布广,最大体应变大于其他区域;嵩萁构造区的重力滑动、剪切和伸展变形使煤体强度和孔隙率最低、最大体应变最小;崤熊构造区内煤体的最大体应变介于两者之间。该结论对河南省煤层气开发有指导意义。   相似文献   

17.
回采工作面采空区瓦斯涌出规律的数值模拟研究   总被引:7,自引:0,他引:7  
从分析采空区内部的瓦斯源出发,用负指数函数描述各煤层瓦斯涌出强度的衰减过程。用迎风格式的有限元方法求解了非均质回采采空区流场的瓦斯-大气两相混溶渗流-扩散方程,以可视化技术描绘了采空区瓦斯涌出与风流交换和瓦斯分布变化规律的流体力学原理。模拟表明,采空区绝对瓦斯涌出量随工作面风量呈衰减变化。而与采空区瓦斯涌出强度呈显著地线性增加,与工作面推进度呈线性递减(但递减幅度不大);工作面风量的突然增大会对瓦斯涌出量在短时间内(8min)产生剧烈的高峰影响,用逐渐增风方法可以避免瓦斯高峰涌出的影响。提出了采空区瓦斯涌出强度的概念,论证了用瓦斯涌出强度衡量采空区瓦斯涌出的科学意义。  相似文献   

18.
煤层含气量对煤层气开发有直接影响。柿庄南区块煤层含气量相对较高,但开发过程中存在较多低效井,开展含气量三维地质建模有助于厘定含气性对煤层气井产量的影响。以沁水盆地柿庄南区块3号煤层为研究对象,运用多元回归分析方法依次建立基于埋深、灰分、挥发分及固定碳含量等参数的含气量预测公式及基于测井数据的煤岩工业分析各组分含量预测公式,最终得出柿庄南区块基于测井数据的含气量预测模型并应用于全区,与实测值对比表明预测结果较好。运用Petrel软件基于预测结果构建含气量模型,探讨3号煤层含气量三维分布特征。研究表明,区内3号煤层含气量介于11~20 m3/t,其主控因素为煤层埋深和构造部位。该模型对研究区煤层气井低产因素厘定和煤层气开发生产具有指导意义。移动阅读   相似文献   

19.
现有常规油气井产出剖面测试方法在煤层气井中适应性较差,测试范围和测量工艺等存在局限性,施工成功率低。因此,本文对煤层气井产出剖面测试技术进行了整体的系统化设计和研发。通过紧凑的结构设计、高度集成,研发了一套可同时进行温度、压力、磁性定位、热式流量、探针持气率、微波持气、涡轮流量和超声流量等多参数测量的煤层气井测井仪,并研制了一套一次下井可进行多种测试技术测量的煤层气井产出剖面测试技术。同时提高了测试仪器的精度和抗干扰能力,开发了多任务多窗口的便携地面系统操作,并研制新型偏心测试井口应用于煤层气井,实现修井作业时不间断连续测试。该技术在鄂尔多斯盆地石楼北区块3口煤层气井进行了现场试验,取得精确、连续的测试数据。测试结果显示,石楼北区块8#+9#煤层为主力产气、产水层。  相似文献   

20.
白云凹陷断裂作为天然气运移通道的地质-地球化学证据   总被引:1,自引:0,他引:1  
通过对白云凹陷区域地质特征分析,并依据天然气的气体成分和甲烷与乙烷的碳同位素关系,对天然气的母源进行分析。结果表明,本区天然气的母质类型主要为II—III有机质生源。对坡折带断层活动的时限进行分析,发现白云凹陷的断裂活动可分为I—IV4个区,每个区的断裂活动均有差异。从I区到IV区,断裂活动依次减弱。番禺低隆起反向断层东西向和南北向活动性存在差异:第三排反向断层活动性强于第二排、第四排又强于第三排。反向断层的主活动期对油气的垂向运移具有重要控制作用,而结束期对油气的封堵圈闭有重要意义。依据录井天然气的同位素特征和流体包裹体的分析证实了断裂是本区天然气垂向运移的主要通道,断层的活动与罐装岩屑录井气地球化学特征完全一致。PY34-1-1断层活动微弱,热成因气没有运移到浅层,说明该区天然气的运移主要发生在深层T5层。LH19-1-1在T4—T5、T2层均发生了天然气的运移,甚至在1000m的浅层,也发现了甲烷碳同位素很重(-30‰)的热成因甲烷。这说明在LH19-1-1区块,热成因气已经运移到浅层。与此同时,流体包裹体均一化温度的直方图与罐装岩屑录井气中的非常吻合,断层活动越强,包裹体均一化温度的峰值越多,这同样表明天然气的垂向运移和分布主要受断裂的活动控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号