首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical profiles of the turbulence parameters calculated for the planet-averaged conditions from the experimental data on the turbulent fluctuations of temperature and wind velocity are presented. Improved formulas accounting for the difference between the atmospheric gas on Venus and an ideal one, and the large difference in its thermal capacity at different altitudes, are used. The commonly used formula for the potential temperature describing the atmospheres of the Earth and Mars is inapplicable to the atmosphere of Venus. It has been shown that the opinion on the absence of turbulence in the atmosphere of Venus is based on overestimated values of the dynamic Richardson number obtained from the smoothed profiles of wind velocity, while its actual values are below unity due to the large wind velocity gradients produced by buoyancy waves. To improve the global circulation models of the atmosphere of Venus, it is necessary to use the currently available turbulence parameters calculated from experimental data.  相似文献   

2.
The comparison of the theoretical inferences and the experimental data on large-scale turbulence in the atmospheres of the Earth and Venus, including those acquired with the Venus Express spacecraft, allows us to conclude that there is a inverse spectral flux of energy in the atmosphere of Venus, as in the terrestrial atmosphere, which participates in generating the superrotation of the atmosphere.  相似文献   

3.
In previous publications the author considered how breaking buoyancy waves and the thermal source arising due to different absorption coefficients of solar and atmospheric radiation fluxes contributed to turbulence. In this study, the contribution to turbulence made by the dynamical source arising in consequence of convective instability of large-scale atmospheric motions is examined. Its value is estimated from experimental wind speed data for the atmosphere of Venus. The contributions of the indicated sources of turbulent energy are compared. The rate of dissipation of kinetic energy due to molecular viscosity is demonstrated to be several orders of magnitude less than the rate of dissipation necessary to maintain an invariable superrotation pattern. This is an additional argument for the permanent existence of turbulence in the atmosphere of Venus, which many authors consider doubtful. It is demonstrated why turbulence is present at the atmospheric stratification that seems to be stable.  相似文献   

4.
This paper presents the principal results of wind velocity and turbulence measurements in the Venus atmosphere during the Venera flights.  相似文献   

5.
Among the numerous and valuable results obtained from the Venus Express spacecraft, information from several instruments suggests that turbulence is present in the mesosphere. In this paper, the results of these experiments are interpreted with the use of the available data on turbulence in planetary atmospheres. Accounting for turbulence is necessary for developing models of the structure and dynamics of Venus’ atmosphere.  相似文献   

6.
7.
Recent probes of the planet Venus reveal a probable surface temperature exceeding 700K and a pressure exceeding 100 atm. A very dusty lower atmosphere may exist which is composed of micron-sized particles kept airborne by mild turbulence and a gentle circulation of deep adiabatic currents. A study of surface conditions responsible for generation and persistence of surface dust clouds is of fundamental importance in the radiative and dynamic properties of the atmosphere. Also spurious radar echoes may be caused by suspended particulate matter, thus explaining the high relief reported by radar altimeters.Equations describing transportation and deposition of dust and sand have been solved for the surface conditions of Venus. It is concluded that the minimum wind velocity for initiating grain movement is about one order of magnitude smaller than on Earth. In addition, this minimum wind velocity occurs for smaller particles on Venus than on Earth. Once the particles are raised, they can be maintained aloft for longer periods of time and over a larger size range on Venus.Surface structures such as ripples evolved from aeolian deposition are likely to be of smaller vertical dimensions but larger horizontally when compared with equivalent structures on Earth.  相似文献   

8.
A thermal regime of the troposphere of Venus is mainly determined by the greenhouse effect. A closeness of the real temperature gradient to the adiabatic one indicates that turbulent heat fluxes are also essential. Additional problems arise as only about 11% of the solar radiation absorbed by the planet reaches the surface, and most of it is taken up in the clouds at altitudes of 60–70 km. The present study summarizes experimental data on atmospheric parameters related to turbulence and estimates turbulent fluxes and turbulence characteristics. These data confirm the author's hypothesis of an anomalous downward turbulent heat flux in the free atmosphere. A normal upward turbulent heat flux exists in the planetary boundary layer.  相似文献   

9.
J.E. Ainsworth  J.R. Herman 《Icarus》1977,30(2):314-319
An examination of the effect of assumptions in the interpretation of the Venera wind data is made as a rebuttal to the suggestion by A.T. Young that the 140 m/sec Venera 8 horizontal wind at 45 km may be either spurious or anomalous. The Venera measurements of wind speed along with the Mariner measurements of a lower region of strong turbulence are evidence for a wide band of variable high-speed retrograde horizontal winds which girdle Venus at the equator. In the prevalent interpretation of the Mariner 10 uv photographs, the region of the top of the visible cloud is characterized by variable high-speed retrograde horizontal winds which orbit Venus with an average period of 4 Earth days, and by many features indicating vertical convection. This interpretation, together with the possibility of atmospheric corotation due to frictional coupling, suggests that the Venera-Mariner band of winds at 45 km extends well beyond the top of the visible cloud, and that the upper region of strong turbulence detected by the Mariners may result in part from vertical convection currents carried along by high-speed horizontal winds. In an alternate interpretation of the Mariner 10 uv photographs Young suggests that the predominant motions may be traveling wavelike disturbances with a 4-day period rather than bulk motion of the atmosphere. For this case the upper region of strong turbulence is interpreted as due mostly to vertical wind shear resulting from a rapid decrease in wind speed within a relatively short distance above the Venera-Mariner band of high-speed winds.  相似文献   

10.
Eighty-seven measurements of the thermal structure in the atmosphere of Venus between the altitudes of about 40 and 85 km were derived from Pioneer Venus Orbiter radio occultation data taken during four occultation seasons from December 1978 to October 1981. These measurements cover latitudes from ?68 to 88° and solar zenith angles of 8 to 166°. The results indicate that the characteristics of the thermal structure in both the troposphere and stratosphere regions are dependent predominantly on the latitude and only weakly on solar illumination conditions. In particular, the circumpolar collar cloud region in the northern hemisphere (latitude 55 to 77°) displays the most dramatic changes in structure, including the appearance of a large inversion, having an average magnitude of about 18°K and a maximum of about 33°K. Also in this region, the tropopause altitude rises by about 4.8 km above its value at low latitudes, the tropopause temperature drops by about 60°K, and the pressure at the tropopause decreases by an average of about 240 mbar. These changes in the collar region are correlated with observations of increased turbulence and greater amplitude of thermal waves in the region, which is located where the persistent circulation pattern in the Venus atmosphere changes from zonally symmetric retrograde rotation to a hemispherical circumpolar vortex. It was shown that the large zonal winds associated with this circulation pattern are not likely to produce distortions in the atmosphere of a magnitude that could lead to temperature errors of the order of the mesosphere inversions observed in the collar region, but under certain circumstances zonal wind distortion could cause errors of 3–4°K.  相似文献   

11.
The similarity of atomic parameters for the CO2 atmosphere of Venus and that of the Earth is used to calculate the ionization and optical emission rate in the upper atmosphere of Venus resulting from a major solar cosmic ray event. The possibility of as much as 10 per cent of N2 in the atmospheric composition of Venus does not change these effects appreciably.  相似文献   

12.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

13.
Venus cloud covered atmosphere offers a well-suited framework to study the coupling between the atmospheric dynamics and the structure of the cloud field. Violet images obtained during the Galileo flyby from 12 to 17 February 1990 have been analyzed to retrieve the zonal power spectra of the cloud brightness distribution field between latitudes 70° N and 50° S. The brightness distribution spectra serve as a diagnostic of the eddy kinetic energy spectrum providing indirect information about the distribution of energy along different spatial scales. We composed images covering a full rotation of the atmosphere at the level of the UV contrasted clouds obtaining maps of almost 360° that allowed us to obtain the brightness power spectra from wavenumbers k=1 to 50. A full analysis of the spectrum slope for different latitude bands and ranges of wave numbers is presented. The power spectra follow a classical law kn with exponent n ranging from −1.7 to −2.9 depending on latitude and the wavenumber range. For the whole planet, the average of this parameter is −2.1 intermediate between those predicted by the classical turbulence theories for three- and two-dimensional motions (n=−5/3 and n=−3). A comparison with previous analysis of Mariner 10 (in 1974) and Pioneer Venus (in 1979) shows significant temporal changes in the cloud global structure and in the turbulence characteristics of the atmosphere.  相似文献   

14.
Submillimeter line observations of CO in the Venus middle atmosphere (mesosphere) were observed with the James Clerk Maxwell Telescope (JCMT, Mauna Kea) about the May 2000, February 2002 superior and July 1999, March 2001 inferior conjunctions of Venus. Combined 12CO and 13CO isotope spectral line measurements at 345 and 330 gHz frequencies, respectively, provided enhanced sensitivity and vertical coverage for simultaneous retrievals of atmospheric temperatures and CO mixing ratios over the altitude region 75-105 km with vertical resolution 4-5 km. Supporting millimeter 12CO spectral line observations with the Kitt Peak 12-m telescope (Steward Observatories) provide enhanced temporal coverage and CO mixing sensitivity. Implementation of CO/temperature profile retrievals for the 2000, 2002 dayside (superior conjunction) and 1999, 2001 nightside (inferior conjunction) periods yields a first-time definition of the vertical structure and diurnal variation of a low-to-mid-latitude mesopause within the Venus atmosphere. At the times of these 1999-2002 observations, the Venus mesopause was located at a slightly lower level in the nightside (0.5 mbar, ∼87 km) versus the dayside (0.2 mbar, ∼91 km) atmosphere. Average diurnal variation of Venus mesospheric temperatures appears to be ≤ 5 K at and below the mesopause. Diurnal variation of Venus thermospheric temperatures increases abruptly just above the mesopause, reaching 50 K by the 0.01-mbar pressure level (∼102 km). Atmospheric temperatures above and below the Venus mesopause exhibited global-scale (≥4000 km horizontal) variations of large amplitude (7-15 K) on surprisingly short timescales (daily to monthly) during the 2001 nightside and 2002 dayside observing periods. Venus dayside mesospheric temperatures observed during the 2002 superior conjunction were also 10-15 K warmer than observed during the 2000 superior conjunction. A characteristic timescale for these global temperature variations is not defined, but their magnitude is comparable to previous determinations of secular variability in nightside mesospheric temperatures (Clancy and Muhleman, 1991).  相似文献   

15.
We speculate on the origin and physical properties of haze in the upper atmosphere of Venus. It is argued that at least four distinct types of particles may be present. The densest and lowest haze, normally seen by spacecraft, probably consists of a submicron sulfuric acid aerosol which extends above the cloud tops (at ~70 km) up to ~80 km; this haze represents an extension of the upper cloud deck. Measurements of the temperature structure between 70 and 120 km indicate that two independent water ice layers may occasionally appear. The lower one can form between 80 and 100 km and is probably the detached haze layer seen in high-contrast limb photography. This ice layer is likely to be nucleated on sulfuric acid aerosols, and is analogous to the nacreous (stratospheric) clouds on Earth. At the Venus “mesopause” near 120 km, temperatures are frequently cold enough to allow ice nucleation on meteoric dust or ambient ions. The resulting haze (which is analogous to noctilucent clouds on Earth) is expected to be extremely tenous, and optically invisible. On both Earth and Venus, meteoric dust is present throughout the upper atmosphere and probably has similar properties.  相似文献   

16.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

17.
We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (ΔE/E∼7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.  相似文献   

18.
Ralph Kahn 《Icarus》1982,49(1):71-85
We show how crater size-density counts may be used to help constrain the history of the Venus atmosphere, based on the predictions of simple but reasonable models for crater production, surface erosion, and the effects of atmospheric drag and breakup on incident meteors in the Venus atmosphere. If the atmosphere is old, we may also be able to determine the importance of breakup as a mechanism for destroying incident meteors in a dense fluid. In particular, if the atmosphere is young, the old (uneroded) surfaces will have crater densities upward of 10?4 km?2 and a ratio of small (4 km) craters to large (128 km) craters near 103. If the atmosphere is old and the breakup mechanism is dominant, absolute crater densities on Venus surfaces will be diminished by several orders of magnitude relative to the young atmosphere case. If atmospheric drag is dominant and the atmosphere is old, the absolute crater density will be lowered by perhaps an order of magnitude relative to the young atmosphere case, and the ratio of small to large craters will be reduced to a value near 101.5 according to the models. The comparison of crater populations on young, as well as old, surfaces on Venus can help in distinguishing the young and old atmosphere scenarios, especially since the situation may be complicated by currently undetermined erosional and tectonic processes. Once a large fraction of Venus surface has been imaged at kilometer resolution, as the VOIR project promises to do, it could be possible to make an early determination of the age of the Venus atmosphere.  相似文献   

19.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

20.
《Planetary and Space Science》2006,54(13-14):1415-1424
The forthcoming observations by Venus Express provide an ideal opportunity to comprehensively study the atmosphere of Venus for the first time since Pioneer Venus (1978–1992), and for the first time ever in detail at polar latitudes. This article reviews some of our current knowledge from space and ground-based observations about the upper atmosphere of Venus, such as its thermal structure, the global distribution of gases and dynamics. We discuss the processes most likely responsible for phenomena such as the cold nightside cryosphere, the cloud top superrotation and waves, and highlight outstanding scientific challenges for Venus Express measurements. In particular, we describe an experiment to measure atmospheric drag using the on-board accelerometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号