首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

2.
Jupiter’s moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave’s growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.  相似文献   

3.
A dust cloud of Ganymede has been detected by in situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius=2635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite's surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.  相似文献   

4.
Since their discovery in Voyager images, the origin of the bright polar caps of Ganymede has intrigued investigators. Some models attributed the polar cap formation to thermal migration of water vapor to higher latitudes, while other models implicated plasma bombardment in brightening ice. Only with the arrival of Galileo at Jupiter was it apparent that Ganymede possesses a strong internal magnetic field, which blocks most of the plasma from bombarding the satellite's equatorial region while funneling plasma onto the polar regions. This discovery provides a plausible explanation for the polar caps as related to differences in plasma-induced brightening in the polar and the equatorial regions. In this context, we analyze global color and high resolution images of Ganymede obtained by Galileo, finding a very close correspondence between the observed polar cap boundary and the open/closed field lines boundary obtained from new modeling of the magnetic field environment. This establishes a clear link between plasma bombardment and polar cap brightening. High resolution images show that bright polar terrain is segregated into bright and dark patches, suggesting sputter-induced redistribution and subsequent cold trapping of water molecules. Minor differences between the location of the open/closed field lines boundary and the observed polar cap boundary may be due to interaction of Ganymede with Jupiter's magnetosphere, and our neglect of higher-order terms in modeling Ganymede's internal field. We postulate that leading-trailing brightness differences in Ganymede's low-latitude surface are due to enhanced plasma flux onto the leading hemisphere, rather than darkening of the trailing hemisphere. In contrast to Ganymede, the entire surface of Europa is bombarded by jovian plasma, suggesting that sputter-induced redistribution of water molecules is a viable means of brightening that satellite's surface.  相似文献   

5.
O.L. Hansen 《Icarus》1973,18(2):237-246
Eclipse observations of Jupiter's satellites Io, Europa, and Ganymede have been obtained in an 8 to 14-μm band pass during 1971. The simplest thermal model able to explain the data for each satellite is a two-layer surface structure with an upper layer, only a few millimeters thick, having low thermal conductivity consistent with fine rock powder or frost, and a subsurface having high thermal conductivity consistent with solid rock or dense ice. The upper layer on Io (γ = 1100 ± 100)2 appears to be different from that on Europa (γ = 3000 ± 1000) and Ganymede (γ = 3400 ± 700), but the two-layer model fits all three satellites.  相似文献   

6.
Jun Kimura  Takashi Nakagawa 《Icarus》2009,202(1):216-224
Ganymede has an intrinsic magnetic field which is generally considered to originate from a self-excited dynamo in the metallic core. Driving of the dynamo depends critically on the satellite's thermal state and internal structure. However, the inferred structure based on gravity data alone has a large uncertainty, and this makes the possibility of dynamo activity unclear; variations in core size and composition significantly change the heat capacity and alter the cooling history of the core. The main objectives of this study is to explore the structural conditions for a currently active dynamo in Ganymede using numerical simulations of the thermal history, and to evaluate under which conditions Ganymede can maintain the dynamo activity at present. We have investigated the satellite's thermal history using various core sizes and compositions satisfying the mean density and moment of inertia of Ganymede, and evaluate the temperature and heat flux at the core-mantle boundary (CMB). Based on the following two conditions, we evaluate the possibility of dynamo activity, thereby reducing the uncertainty of the previously inferred interior structure. The first condition is that the temperature at the CMB must exceed the melting point of a metallic core, and the second is that the heat flux through the CMB must exceed the adiabatic temperature gradient. The mantle temperature starts to increase because of the decay of long-lived radiogenic elements in the rocky mantle. After a few Gyr, radiogenic elements are exhausted and temperature starts to decrease. As the rocky mantle cools, the heat flux at the CMB steadily increases. If the temperature and heat flux at the CMB satisfy these conditions simultaneously, we consider the case as capable of driving a dynamo. Finally, we identify the Dynamo Regime, which is the specific range of internal structures capable of driving the dynamo, based on the results of simulations with various structures. If Ganymede's self-sustained magnetic field were maintained by thermal convection, the satellite's metallic core would be relatively large and, in comparison to other terrestrial-type planetary cores, strongly enriched in sulfur. The dynamo activity and the generation of the magnetic field of Ganymede should start from a much later stage, possibly close to the present.  相似文献   

7.
We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite’s surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units.  相似文献   

8.
M.L. Marconi 《Icarus》2007,190(1):155-174
A multispecies, 2-D axisymmetric, kinetic model that accounts for all kinetic regimes is applied to the neutral atmosphere of Ganymede. Using reasonable interpretations of the limited observations, it is found that Ganymede has a two-part atmosphere, with H2O being dominant between the subsolar point and a subsolar latitude of about 45 degrees, and O2 dominating elsewhere at the lower altitudes. H2 is dominant everywhere above a few hundred kilometers. Except for a small region near the subsolar point, the atmosphere is quasicollisional or collisionless. The resulting nonequilibrium is manifest in the atmospheric constituents having generally different temperatures and bulk velocities. Escape rates are similar to those of Europa, but a less visible torus is expected. The escape rates are also highly latitude and species dependent. The effect on the atmosphere by a fast ion plasma is investigated and found to primarily affect the O2 scale height above a few hundred kilometers. It is also found that Lyman α emission from collision of electrons with H2 may be significant near the surface.  相似文献   

9.
《Icarus》1987,69(1):91-134
Thermal evolution models are presented for Ganymede, assuming a mostly differentiated initial state of a water ocean overlying a rock layer. The only heat sources are assumed to be primordial heat (provided by accretion) and the long-lived radiogenic heat sources in the rock component. As Ganymede cools, the ocean thins, and two ice layers develop, one above composed of ice I, and the other below composed of high-pressure polymorphs of ice. Subsolidus convection proceeds separately in each ice layer, its transport of heat calculated using a simple parameterized convection scheme and the most recent data on ice rheology. The model requires that the average entropy of the deep ice layer exceeds that of the ice I layer. If the residual ocean separating these layers becomes thin enough, then a Rayleigh-Taylor-like (“diapiric”) instability may ensue, driven by the greater entropy of the deeper ice and merging the two ice mantles into a single convective layer. This instability is not predicted by linear analysis but occurs for plausible finite amplitude perturbations associated with large Rayleigh number convection. The resulting warm ice diapirs may lead to a dramatic “heat pulse” at the surface and to fracturing of the lithosphere, and may be directly or indirectly responsible for resurfacing and grooved terrain formation on Ganymede. The timing of this event depends rather sensitively on poorly known rheological parameters, but could be consistent with chronologies deduced from estimated cratering rates. Irrespective of the occurrence or importance of the heat pulse, we find that lithospheric fracturing requires rapid stress loading (on a time scale ⪅104 years). Such a time scale can be realized by warm ice diapirism, but not directly by gradual global expansion. In the absence of any quantitative and self-consistent model for the resurfacing of Ganymede by liquid water, we favor resurfacing by warm ice flows, which we demonstrate to be physically possible, a plausible consequence of our models, compatible with existing observations, and a hypothesis testable by Galileo. We discuss core formation as an alternative driver for resurfacing, and conclude that it is less attractive. We also consider anew the puzzle of why Callisto differs so greatly from Ganymede, offering several possible explanations. The models presented do not provide a compelling explanation for all aspects of Ganymedean geological evolution, since we have identified several potential problems, most notably the apparently extended period of grooved terrain formation (several hundred million years), which is difficult to reconcile with the heat pulse phenomenon.  相似文献   

10.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

11.
《Icarus》1987,70(1):99-110
Recent interpretations of the reflectance spectra of the icy Galilean satellites (Europa, Ganymede, and Callisto) have implied very ice-rich surfaces, as high as 90 wt% ice even on the dark surface of Callisto. A reevaluation of the spectra, taking into account the depth of the 3-μm fundamental water ice absorption feature as well as the shorter wavelength bands, suggests that the spectra of at least Ganymede and Callisto may also be consistent with much lower ice abundances if the ice is segregated from the nonicy material. Reasonable fits to all band depths (including the shallow 1.04- and 1.25-μm bands) are obtained with around 50% areal coverage of ice on Ganymede and 10% on Callisto, the rest of the surface being occupied by carbonaceous chondrite-like material which has a strong 3-μm absorption due to bound water. Europa's spectrum probably indicates a homogeneous icy surface. The darkness beyond 3 μm, and lack of a 3.6-μm peak, for all three objects may be consistent with the presence of small quantities of sulfuric acid on the satellite surfaces.  相似文献   

12.
Differences in the apparent ages of the surfaces of Ganymede and Callisto, as revealed by Voyager images, could be due to the persistence of tectonic activity on Ganymede beyond the time of early, heavy bombardment. The slightly greater radioactive content expected in Ganymede could prolong such activity by as much as 0.5 billion years beyond the cessation of endogenic surface activity on Callisto. Tidal dissipation could not have been important for Ganymede for more than 108 years, and it was never important for Callisto.  相似文献   

13.
Steven W. Squyres 《Icarus》1981,46(2):156-168
Using the technique of photoclinometry, topographic profiles across areas of grooved terrain and several other features on Ganymede have been constructed. The grooved terrain examined consists of subparallel grooves spaced 3–10 km apart. Topographic amplitudes are typically 300–400 m, with a maximum of about 700 m. Slopes are very gentle and tend to be primarily concave upward. Very few major positive relief features exist on Ganymede. The most important of these is a broad, gently sloping dome-shaped feature 260 km in diameter and over 2 km high.  相似文献   

14.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

15.
Jupiter's satellite Ganymede is the largest natural satellite in the Solar System. As a result of the close encounter of Ganymede by the Galileo spacecraft in June and September 1996, the second zonal J2 and the second sectorial C22 Stokes parameters are now well determined (Anderson et al., 1996). Using the updated geodetic parameters, we have constructed a group of models for the internal structure of Ganymede, and have estimated some dynamical parameters for these models. A comparison with the Moon is made. The conclusion that can be drawn from this study is that, whereas Ganymede at present is in a state of hydrostatic equilibrium, this is certainly not the case for the Moon. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Satellite-aided capture is a mission design concept used to reduce the delta-v required to capture into a planetary orbit. The technique employs close flybys of a massive moon to reduce the energy of the planet-centered orbit. A sequence of close flybys of two or more of the Galilean moons of Jupiter may further decrease the delta-v cost of Jupiter orbit insertion. A Ganymede-Io sequence can save 207 m/s of delta-v over a single Io flyby. A phase angle analysis based on the Laplace resonance is used to find triple-satellite-aided capture sequences involving Io, Europa, and Ganymede. Additionally, the near-resonance of Callisto and Ganymede is used to find triple-satellite-aided capture sequences involving Callisto, Ganymede, and another moon. A combination of these techniques is used to find quadruple-satellite-aided capture sequences that involve gravity-assists of all four Galilean moons. These sequences can save a significant amount of delta-v and have the potential to benefit both NASA’s Jupiter Europa orbiter mission and ESA’s Jupiter Ganymede orbiter mission.  相似文献   

17.
With the development of real-time service (RTS) project, timing users can apply the real-time precise point positioning (PPP) technique for time transfer. As a participant in the RTS project, the Centre National d’Etudes Spatiales (CNES) implements the PPPWIZARD (Precise point positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator) project to validate the PPP with ambiguity resolution. In order to analyze the contribution of multiple global navigation satellite system (multi-GNSS) and real-time ambiguity resolution to time transfer, our experiment used the observation from multi-GNSS, including GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), BDS (BeiDou navigation System), and Galileo for data processing. Meanwhile, the real-time products from CNES were utilized to examine the performance of four different PPP processing modes. The experimental results indicated that, of all the processing modes, the time transfer using multi-GNSS PPP with GPS ambiguity resolution had the smallest standard deviations (STDs). The STD value was decreased by 38.1%, compared with the traditional time transfer results using GPS PPP.  相似文献   

18.
The photometric properties of selected surface features on Ganymede and Callisto have been studied using Voyager images over phase angles from 10 to 124° taken with the clear filter (effective wave wavelength ∽0.5 μm). Normal reflectences on Ganymede average 0.35 for the cratered terrain and 0.44 for the grooved terrain. The value for the ubiquitous cratered terrain on Callistro is 0.18. The photometric properties of these regions are described closely by a simple scattering function of the form I = Af(α)μ0/(μ + μ0), where A is a constant, μ is the cosine of the emission angle, μ0 is the cosine of the incidence angle, and f(α) is a function of the phase angle, α, only. For these terrains the shape of f(α) is qualitatively similar to that for the moon—generally concave upward. By contrast, bright craters on both satellites have f(α)'s which are concave downward. The scattering properties of these bright features are definitely not Lambertian, but are described approximately by the scattering law given above. The brightest craters on Callisto have reflectances which are only 10% lower than the brightest craters on Ganymede; both have closely similar scattering laws. We estimate that the brightest craters on Ganymede may reach normal reflectances of 0.7. Our phase functions yield phase integrals of q = 0.8 and 0.6 for Ganymede and Callisto, respectively.  相似文献   

19.
Quinn R. Passey 《Icarus》1983,53(1):105-120
High resolution Voyager II images of Enceladus reveal that some regions on its surface are highly cratered; the most heavily cratered surfaces probably date back to a period of heavy bombardment. The forms of many of the craters on Enceladus are similar to those of fresh lunar craters, but many of the craters are much shallower in depth, and the floors of some craters are bowed up. The flattering of craters and bowing up of the floors are indicative of viscous relaxation of the topography. Analysis of the forms of the flattened craters suggests that the viscosity at the top of the lithosphere, in the most heavily cratered regions, is between 1024 and 1025 P. The exact time scale for the collapse of the craters is not known, but probably was between 100 my and 4 gy. The flattened craters are located in distinct zones that are adjacent to zones, of similar age, where craters have not flattened. The zones where flattened craters occur possibly are regions in which the heat flow was (or is) higher than that in the adjacent terrains. Because the temperature at the top of the lithosphere of Enceladus would be less than or equal to that of Ganymede and Callisto, if it is covered by a thick regolith, and because the required viscosity on Enceladus is one to two orders of magnitude less than that for Ganymede and Callisto, it can be concluded that the lithospheric material on Enceladus is different from that of Ganymede and Callisto. Enceladus probably has a mixture of ammonia ice and water ice in the lithosphere, whereas the lithospheres of Ganymede and Callisto are composed primarily of water ice.  相似文献   

20.
Abstract— We examine the morphology of central peak craters on the Moon and Ganymede in order to investigate differences in the near‐surface properties of these bodies. We have extracted topographic profiles across craters on Ganymede using Galileo images, and use these data to compile scaling trends. Comparisons between lunar and Ganymede craters show that crater depth, wall slope and amount of central uplift are all affected by material properties. We observe no major differences between similar‐sized craters in the dark and bright terrain of Ganymede, suggesting that dark terrain does not contain enough silicate material to significantly increase the strength of the surface ice. Below crater diameters of ?12 km, central peak craters on Ganymede and simple craters on the Moon have similar rim heights, indicating comparable amounts of rim collapse. This suggests that the formation of central peaks at smaller crater diameters on Ganymede than the Moon is dominated by enhanced central floor uplift rather than rim collapse. Crater wall slope trends are similar on the Moon and Ganymede, indicating that there is a similar trend in material weakening with increasing crater size, and possibly that the mechanism of weakening during impact is analogous in icy and rocky targets. We have run a suite of numerical models to simulate the formation of central peak craters on Ganymede and the Moon. Our modeling shows that the same styles of strength model can be applied to ice and rock, and that the strength model parameters do not differ significantly between materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号