首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   

3.
4.
5.
We present the analysis of 30 ks of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in the inner 30-kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ∼12 keV in the outer regions of the cluster to ∼4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parametrized by a Navarro, Frenk & White model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of
   
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
   
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼     with an integrated mass deposition rate of     within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton .  相似文献   

6.
7.
8.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

9.
10.
We have used a deep Chandra observation of the central regions of the twin-jet Fanaroff–Riley class I (FRI) radio galaxy 3C 31 to resolve the thermal X-ray emission in the central few kpc of the host galaxy, NGC 383, where the jets are thought to be decelerating rapidly. This allows us to make high-precision measurements of the density, temperature and pressure distributions in this region, and to show that the X-ray emitting gas in the centre of the galaxy has a cooling time of only  5×107 yr  . In a companion paper, these measurements are used to place constraints on models of the jet dynamics.
A previously unknown one-sided X-ray jet in 3C 31, extending up to 8 arcsec from the nucleus, is detected and resolved. Its structure and steep X-ray spectrum are similar to those of X-ray jets known in other FRI sources, and we attribute the radiation to synchrotron emission from a high-energy population of electrons. In situ particle acceleration is required in the region of the jet where bulk deceleration is taking place.
We also present X-ray spectra and luminosities of the galaxies in the Arp 331 chain of which NGC 383 is a member. The spectrum and spatial properties of the nearby bright X-ray source 1E 0104+3153 are used to argue that the soft X-ray emission is mostly due to a foreground group of galaxies rather than to the background broad absorption-line quasar.  相似文献   

11.
12.
13.
14.
Multiwavelength imaging and spectroscopy of the z =0.708 radio galaxy 3C 441 and a red aligned optical/infrared component are used to show that the most striking aspect of the radio–optical 'alignment effect' in this object is due to the interaction of the radio jet with a companion galaxy in the same group or cluster. The stellar population of the red aligned continuum component is predominantly old, but with a small post-starburst population superposed, and it is surrounded by a low-surface-brightness halo, possibly a face-on spiral disc. The [O iii ] 500.7/[O ii ] 372.7 emission-line ratio changes dramatically from one side of the component to the other, with the low-ionization material apparently having passed through the bow shock of the radio source and been compressed. A simple model for the interaction is used to explain the velocity shifts in the emission-line gas, and to predict that the ISM of the interacting galaxy is likely to escape once the radio source bow shock has passed through. We also discuss another, much fainter, aligned component, and the subarcsecond-scale alignment of the radio source host galaxy. Finally, we comment on the implications of our explanation of 3C 441 on theories for the alignment effect.  相似文献   

15.
We present an analysis of 20 galaxy clusters observed with the Chandra X-ray satellite, focusing on the temperature structure of the intracluster medium and the cooling time of the gas. Our sample is drawn from a flux-limited catalogue but excludes the Fornax, Coma and Centaurus clusters, owing to their large angular size compared to the Chandra field of view. We describe a quantitative measure of the impact of central cooling, and find that the sample comprises nine clusters possessing cool cores (CCs) and 11 without. The properties of these two types differ markedly, but there is a high degree of uniformity amongst the CC clusters, which obey a nearly universal radial scaling in temperature of the form   T ∝ r ∼0.4  , within the core. This uniformity persists in the gas cooling time, which varies more strongly with radius in CC clusters  ( t cool∝ r ∼1.3)  , reaching   t cool < 1 Gyr  in all cases, although surprisingly low central cooling times (<5 Gyr) are found in many of the non-CC systems. The scatter between the cooling time profiles of all the clusters is found to be remarkably small, implying a universal form for the cooling time of gas at a given physical radius in virialized systems, in agreement with recent previous work. Our results favour cluster merging as the primary factor in preventing the formation of CCs.  相似文献   

16.
We have observed the prototypical wide-angle tail (WAT) radio galaxy 3C 465 with Chandra and XMM–Newton . X-ray emission is detected from the active nucleus and the inner radio jet, as well as a small-scale, cool component of thermal emission, a number of the individual galaxies of the host cluster (Abell 2634), and the hotter thermal emission from the cluster itself. The X-ray detection of the jet allows us to argue that synchrotron emission may be an important mechanism in other well-collimated, fast jets, including those of classical double radio sources. The bases of the radio plumes are not detected in the X-ray, which supports the model in which these plumes are physically different from the twin jets of lower-power radio galaxies. The plumes are in fact spatially coincident with deficits of X-ray emission on large scales, which argues that they contain little thermal material at the cluster temperature, although the minimum pressures throughout the source are lower than the external pressures estimated from the observed thermal emission. Our observations confirm both spatially and spectrally that a component of dense, cool gas with a short cooling time is associated with the central galaxy. However, there is no evidence for the kind of discontinuity in external properties that would be required in many models of the jet–plume transition in WATs. Although the WAT jet–plume transition appears likely to be related to the interface between this central cool component and the hotter intracluster medium, the mechanism for WAT formation remains unclear. We revisit the question of the bending of WAT plumes, and show that the plumes can be bent by plausible bulk motions of the intracluster medium, or by motion of the host galaxy with respect to the cluster, as long as the plumes are light.  相似文献   

17.
We report a Chandra observation of the   z =3.395  radio galaxy B2 0902+343. The unresolved X-ray source is centred on the active nucleus. The spectrum is well fitted by a flat power law of photon index of  Γ∼1.1  with intrinsic absorption of  8×1022 cm-2  , and an intrinsic  2–10 keV  luminosity of  3.3×1045 erg s-1  . More complex models that allow for a steeper spectral index cause the column density and intrinsic luminosity to increase. The data limit any thermal luminosity of the hot magnetized medium, assumed responsible for high Faraday rotation measures seen in the radio source, to less than ∼1045 erg s−1.  相似文献   

18.
We present an ASCA observation of the broad-line radio galaxy 3C 111. The X-ray spectrum is well described by a model consisting of a photoelectrically absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic H  I . Whilst this may be the result of intrinsic absorption from a circumnuclear torus or highly warped accretion disc, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Kα line which is well explained as being a fluorescent line originating from the central regions of a radiatively efficient accretion disc. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.  相似文献   

19.
We present temperature and metallicity maps of the Perseus cluster core obtained with the Chandra X-ray Observatory. We find an overall temperature rise from  ∼3.0 keV  in the core to  ∼5.5 keV  at 120 kpc and a metallicity profile that rises slowly from  ∼0.5  solar to  ∼0.6  solar inside 60 kpc, but drops to  ∼0.4  solar at 120 kpc. Spatially resolved spectroscopy in small cells shows that the temperature distribution in the Perseus cluster is not symmetrical. There is a wealth of structure in the temperature map on scales of  ∼10  arcsec (5.2 kpc) showingswirliness and a temperature rise that coincides with a sudden surface brightness drop in the X-ray image. We obtain a metallicity map of the Perseus cluster core and find that the spectra extracted from the two central X-ray holes as well as the western X-ray hole are best-fit by gas with higher temperature and higher metallicity than is found in the surroundings of the holes. A spectral deprojection analysis suggests, however, that this is due to a projection effect; for the northern X-ray hole we find tight limits on the presence of an isothermal component in the X-ray hole, ruling out volume-filling X-ray gas with temperatures below 11 keV at 3σ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号