首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The energy–flux vector and other energy-related quantities play an important role in various wave propagation problems. In acoustics and seismology, the main attention has been devoted to the time-averaged energy flux of time-harmonic wavefields propagating in non-dissipative, isotropic and anisotropic media. In this paper, we investigate the energy–flux vector and other energy-related quantities of wavefields propagating in inhomogeneous anisotropic viscoelastic media. These quantities satisfy energy-balance equations, which have, as we show, formally different forms for real-valued wavefields with arbitrary time dependence and for time-harmonic wavefields. In case of time-harmonic wavefields, we study both time-averaged and time-dependent constituents of the energy-related quantities. We show that the energy-balance equations for time-harmonic wavefields can be obtained in two different ways. First, using real-valued wavefields satisfying the real-valued equation of motion and stress–strain relation. Second, using complex-valued wavefields satisfying the complex-valued equation of motion and stress–strain relation. The former approach yields simple results only for particularly simple viscoelastic models, such as the Kelvin–Voigt model. The latter approach is considerably more general and can be applied to viscoelastic models of unrestricted anisotropy and viscoelasticity. Both approaches, when applied to the Kelvin–Voigt viscoelastic model, yield the same expressions for the time-averaged and time-dependent constituents of all energy-related quantities and the same energy-balance equations. This indicates that the approach based on complex-valued representation of the wavefield may be used for time harmonic waves quite universally. This study also shows importance of joint consideration of time-averaged and time-dependent constituents of the energy-related quantities in some applications.  相似文献   

3.
4.
5.
6.
7.
8.
Scattering of wavefields in a 3-D medium that includes passive and/or active structures, is numerically solved by using the boundary integral equation method (BIEM). The passive structures are velocity anomalies that generate scattered waves upon incidence, and the active structures contain endogenous fracture sources, which are dynamically triggered by the dynamic load due to the incident waves. Simple models are adopted to represent these structures: passive cracks act as scatterers and active cracks as fracture sources. We form cracks using circular boundaries, which consist of many boundary elements. Scattering of elastic waves by the boundaries of passive cracks is treated as an exterior problem in BIEM. In the case of active cracks, both the exterior and interior problems need to be solved, because elastic waves are generated by fracturing with stress drop, and the growing crack boundaries scatter the incident waves from the outside of the cracks. The passive cracks and/or active cracks are randomly distributed in an infinite homogeneous elastic medium. Calculations of the complete waveform considering a single scatter show that the active crack has weak influence on the attenuation of first arrivals but strong influence on the amplitudes of coda waves, as compared with those due to the passive crack. In the active structures, multiple scattering between cracks and the waves triggered by fracturing strongly affect the amplitudes of first arrivals and coda waves. Compared to the case of the passive structures, the attenuation of initial phase is weak and the coda amplitudes decrease slowly.  相似文献   

9.
10.
11.
12.
We present approximate displacement and energy PP and PS reflection/transmission coefficients for weak-contrast interfaces in general weakly anisotropic elastic media. The coefficients were obtained by applying first-order perturbation theory and then expressed in a compact and relatively simple form. The formulae can be used for arbitrary orientations of the incidence plane and interface, without the need to transform the elasticity parameters to a local Cartesian coordinate system. The accuracy of the approximate formulae is illustrated for the PS reflection coefficient for two synthetic models. For these models, we also study the possibility of using the approximate PP reflection coefficient in the inverse problem.  相似文献   

13.
14.
15.
16.
17.
18.
19.
We propose approximate equations for P -wave ray theory Green's function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green's function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used.
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent.  相似文献   

20.
Radiation from point sources in general anisotropic media   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号