首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2016,29(4):1449-1465
We report here in-situ U–Pb and Hf isotopic results of detrital zircons from sixteen Cambrian–Silurian siliciclastic samples across the Nanhua foreland basin, South China. Together with published data from Ediacaran–Silurian sandstones in the region, we establish the temporal and spatial provenance evolution across the basin. Except for samples from northeast Yangtze, all other Ediacaran–Silurian samples exhibit a prominent population of 1100–900 Ma, moderate populations of 850–700 Ma and 650–490 Ma, and minor populations of 2500 Ma and 2000–1300 Ma, grossly matching that of crystalline and sedimentary rocks in northern India. Zircon Hf isotopes further reveal four episodes of juvenile crustal growth at 2.5 Ga, 1.8 Ga, 1.4 Ga and 1.0 Ga in the source regions. Utilizing the basin history and late Neoproterozoic to early Paleozoic paleogeography of South China, we conclude that the Ediacaran–Cambrian sediments in the Nanhua foreland basin were mainly sourced from northern India and adjacent orogens, and the Ordovician–Silurian sediments were derived from both locally recycled Ediacaran–Cambrian rocks and eroded Cathaysian basement. The Wuyi–Yunkai late-orogenic magmatic rocks also contributed to the Silurian sediments in the basin. The upper-Ordovician to Silurian samples in northeast Yangtze received higher proportions of local Cryogenian (850–700 Ma) magmatic rocks which were uplifted during late-Ordovician to Silurian time. We speculate that there was an Ediacaran–Cambrian collisional orogen between South China and northern India, shedding sediments to the early Nanhua foreland basin. Far-field stress during the late stage of this collisional orogeny triggered the Ordovician–Silurian intraplate Wuyi–Yunkai orogeny in South China, and erosion of the local Wuyi–Yunkai orogen further provided detritus to the late Nanhua foreland basin.  相似文献   

2.
Biomarker and n-alkane compound specific stable carbon isotope analyses (CSIA) were carried out on 58 crude oil samples from shallow water and deepwater fields of the Niger Delta in order to predict the depositional environment and organic matter characteristics of their potential source rocks. Using a source organofacies prediction approach from oil geochemistry, the presence in the western deepwater oils relatively abundant C27 steranes, C30 24-n-propyl cholestane, low oleanane index, relatively low pr/ph ratios, gammacerane, and positive to nearly flat C12–C30 n-alkane compound specific stable carbon isotope profiles, suggests that the source facies that expelled these oils contain significant marine derived organic matter deposited under sub-oxic and stratified water column conditions. This contrasts with the terrigenous organic matter dominated source rocks accepted for shallow water Niger Delta oils. Oils in the shallow water accumulations can be separated into terrigenous and mixed marine-terrigenous families. The terrigenous family indicates expulsion from source rock(s) containing overwhelmingly higher plant source organic matter (average oleanane index = 0.48, high C29 steranes) as well as having negative sloping n-alkane isotope profiles. Oxic source depositional conditions (pr/ph > 2.5) and non-stratified conditions (absence to low gammacerane content) are inferred for the terrigenous family. The mixed marine-terrigenous family has biomarker properties that are a combination of the deepwater and terrigenous shallow water oils. Bitumen extracts of the sub-delta Late Cretaceous Araromi Formation shale in the Dahomey Basin are comparable both molecularly and isotopically to the studied western deepwater oil set, but with an over all poor geochemical correlation. This poor geochemical match between Araromi shale and the western deepwater oils does not downgrade the potential of sub-delta Cretaceous source rock contribution to the regional oil charge in the deepwater Niger Delta.  相似文献   

3.
《Applied Geochemistry》2005,20(10):1875-1889
Based on the systematic analyses of light hydrocarbon, saturate, aromatic fractions and C isotopes of over 40 oil samples along with related Tertiary source rocks collected from the western Qaidam basin, the geochemical characteristics of the Tertiary saline lacustrine oils in this region was investigated. The oils are characterized by bimodal n-alkane distributions with odd-to-even (C11–C17) and even-to-odd (C18–C28) predominance, low Pr/Ph (mostly lower than 0.6), high concentration of gammacerane, C35 hopane and methylated MTTCs, reflecting the high salinity and anoxic setting typical of a saline lacustrine depositional environment. Mango’s K1 values in the saline oils are highly variable (0.99–1.63), and could be associated with the facies-dependent parameters such as Pr/Ph and gammacerane indexes. Compared with other Tertiary oils, the studied Tertiary saline oils are marked by enhanced C28 sterane abundance (30% or more of C27–C29 homologues), possibly derived from halophilic algae. It is noted that the geochemical parameters of the oils in various oilfields exhibit regular spatial changes, which are consistent with the depositional phase variations of the source rocks. The oils have uncommon heavy C isotopic ratios (−24‰ to −26‰) and a flat shape of the individual n-alkane isotope profile, and show isotopic characteristics similar to marine organic matter. The appearance of oleanane and high 24/(24 + 27)-norcholestane ratios (0.57–0.87) in the saline oils and source rocks confirm a Tertiary organic source.  相似文献   

4.
In this paper we present new paleomagnetic and paleontological data from the Ordovician and Silurian carbonate rocks of Kotelny Island (the Anjou Archipelago), and from the Ordovician turbidities of Bennett Island (the De Long Archipelago). It is assumed that both archipelagos belong to the NSI (New Siberian Islands) terrane — a key tectonic element in the Arctic region. Ages of the studied rocks have been established by paleontological data and lithological correlations. Our new data on conodonts combined with those from previous studies of Ordovician and Silurian fauna indicate a biogeographic similarity between the shelves of the Siberian paleocontinent and the NSI in the Early Paleozoic. Three new paleomagnetic poles for the NSI (48.9°N, 13.8°E, A95 = 18.1° for 475 Ma; 45.5°N, 31.9°E, A95 = 11.0° for 465 Ma, and 33.7°N, 55.7°E, A95 = 11.0° for 435 Ma) fall between the south-eastern part of Central Europe and the Zagros Mountains. The similarity of paleomagnetic directions from Kotelny and Bennet islands confirms that both the Anjou and De Long archipelagos belong to the same terrane. Calculated paleolatitudes indicate that in Ordovician–Silurian times this terrane has been located between 30° and 45°, possibly in the northern hemisphere. Based on this observation, we suggest a linkage between the NSI and the Kolyma–Omolon superterrane. Comparison of apparent polar wander paths (APWPs) of the NSI, Siberia and other cratons/terranes suggests that the NSI drifted independently. We demonstrate that the structural line between Svyatoy Nos Peninsula and Great Lyakhovsky Island is the continuation of the Kolyma Loop suture on the Arctic shelf, and expect that the continuation of the South Anyui suture is to be found east of the NSI.  相似文献   

5.
We present results of combined in situ U–Pb dating of detrital zircons and zircon Hf and whole-rock Nd isotopic compositions for high-grade clastic metasedimentary rocks of the Slyudyansky Complex in eastern Siberia. This complex is located southwest of Lake Baikal and is part of an early Paleozoic metamorphic terrane in the eastern part of the Central Asian Orogenic Belt (CAOB). Our new zircon ages and Hf isotopic data as well as whole-rock Nd isotopic compositions provide important constraints on the time of deposition and provenance of early Paleozoic high-grade metasedimentary rocks as well as models of crustal growth in Central Asia. Ages of 0.49–0.90 Ga for detrital zircons from early Paleozoic high-grade clastic sediments indicate that deposition occurred in the late Neoproterozoic and early Paleozoic, between ca. 0.62–0.69 and 0.49–0.54 Ga. Hf isotopic data of 0.82–0.69 Ga zircons suggest Archean and Paleoproterozoic (ca. 2.7–2.8 and 2.2–2.3 Ga; Hfc = 2.5–3.9 Ga) sources that were affected by juvenile 0.69–0.82 Ga Neoproterozoic magmatism. An additional protolith was also identified. Its zircons yielded ages of 2.6–2.7 Ga, and showed high positive εHf(t) values of +4.1 to +8.0, and Hf model ages tHf(DM) = tHfc = 2.6–2.8 Ga, which is nearly identical to the crystallization ages. These isotopic characteristics suggest that the protolith was quite juvenile. The whole-rock Nd isotopic data indicate that at least part of the Slyudyansky Complex metasediments was derived from “non-Siberian” provenances. The crustal development in the eastern CAOB was characterized by reworking of the early Precambrian continental crust in the early Neoproterozoic and the late Neoproterozoic–early Paleozoic juvenile crust formation.  相似文献   

6.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

7.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

8.
Submarine basalt and trachyte of the Nandoumba group occur in eastern Senegal within the Bassarides branch of the Mauritanides orogen. The unit forms part of the parautochthonous domain which is stacked between underlying Neoproterozoic to Paleozoic foreland and overlying Variscan nappes. The crystallisation age of the volcanic to subvolcanic rocks has been determined by U–Pb single zircon SHRIMP method at 428 ± 5.2 Ma whereas zircon xenocryst ages vary from 500 to 2200 Ma. The shape of the xenocryst grains document proximal Neo- and Paleoproterozoic and distal Mesoproterozoic provenance areas for assimilated sediments. This is compatible with the Paleoproterozoic Birimian basement and Neoproterozoic cover rocks nearby whereas an origin from the Amazonian craton could be assumed for distal Mesoproterozoic zircons.Geochemical and Sm–Nd isotope whole rock analysis show that basalts of the Nandoumba group are similar to modern transitional to alkaline volcanic lavas in intraplate settings. Those basalts have a deep mantle source with a great contribution of a recycled mantle component such as EM1 and/or EM2. The basalts resemble in their composition those from the Meguma terrane of Nova Scotia which are of similar age suggesting a common source and therefore connection of Meguma with Gondwana during this period. Review of circum-Atlantic Silurian magmatism indicates ongoing fragmentation of NW-Gondwana that started in Cambro/Ordovician times.  相似文献   

9.
New combined U–Pb and Lu–Hf isotope analyses on zircon from three turbidite deposits, and petrologic data for associated igneous rocks were used to study the evolution of the Paleozoic basement of Eastern Cordillera, NW Argentina. Maximum and minimum ages for turbidite deposits, considered to be part of the Puncoviscana Fm., are reported. In the Tastil area, turbidites were deposited in a fore-arc setting after 560 Ma and intruded at 534 Ma by the Tastil batholith. In the El Niño Muerto Hill area turbidites with maximum depositional age of 496 ± 11 Ma were intruded by high-K dacites at 483 ± 3 Ma. In the Río Blanco Valley, the turbiditic/hemipelagitic sediments, with maximum depositional age of 463 ± 11 Ma were contemporaneous with E-MORB/OIB volcanism. The U–Pb and Lu–Hf data permitted to distinguish two major periods of magmatic activity during Late Mesoproterozoic–Early Neoproterozoic (0.95 to 1.2 Ga) and Late Neoproterozoic–Early Paleozoic (0.75 to 0.46 Ga) times, the former dominated by the input of juvenile crust and the latter by arc magmatism and recycling of Meso- to Paleoproterozoic crust. On the basis of new data we suggest that western margin of Gondwana was controlled by subduction processes and accretion of small terrains during Neoproterozoic–Early Paleozoic times.  相似文献   

10.
The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~ 1.1 and ~ 1.3 Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050 Ma and is associated with deformation and metamorphism. The older event is documented by ~ 1.3 Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4 Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441 Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~ 1.1 Ga, known as the Tarimian orogeny.  相似文献   

11.
Subduction–accretion complexes occur widely in the Central Asian Orogenic Belt (CAOB). Due to the scarcity of fossils, the depositional timing of the Habahe flysch sequence of the subduction–accretion complex in the Chinese Altai is poorly constrained, which gave rise to much controversy in understanding the time of the basement and the tectonic evolution of the Chinese Altai. U–Pb dating of detrital zircons from the Habahe sequence in the northwestern Chinese Altai reveals a young zircon population with a mean 206Pb/238U age around 438 Ma which, together with a mean 206Pb/238U age of 411 ± 5 Ma for the overlying rhyolite of the Dongxileke Formation, brackets the time of deposition of the sequence between early Silurian and early Devonian. The age of the Dongxileke rhyolite also indicates that the overlying Baihaba Formation possibly began to be deposited in the early Devonian, though U–Pb dating of detrital zircons from this formation gave a maximum depositional age of ~ 438 Ma. The youngest detrital zircons and metamorphic grains of the Habahe sequence reveal different provenance to the sequence in the east. The youngest and metamorphic zircon grains, with early Paleozoic, Neoproterozoic and pre-Neoproterozoic populations, suggest a multi-source for the Habahe sequence. The predominantly early Paleozoic zircons, characterized by concentric zoning, high Th/U ratios and euhedral shapes, imply that the sediments of the sequence were mostly derived from a proximal magmatic source. Based on the age patterns of the Neoproterozoic and pre-Neoproterozoic populations, the Tuva–Mongol Massif, along with adjacent island arcs and metamorphic belts, may be an alternative source region for the Habahe sequence. In view of new geochemical and chronological data for granitoids and advancement in the study of regional metamorphism in the Chinese Altai, we suggest a tectonic model of subduction beneath a huge subduction–accretion complex for the evolution of the Chinese Altai in the early Paleozoic.  相似文献   

12.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   

13.
The relationship of the Yangtze Block with other continental blocks of the Rodinia and Gondwana supercontinents is hotly debated. Here we report U–Pb and Lu–Hf isotopic data for zircons from the latest Neoproterozoic Yanjing Group and the overlying Silurian–Devonian rocks on the western margin of Yangtze Block, which provide critical constraints on the provenance of these sediments and further shed light on the crustal evolution and tectonic affinity of the western Yangtze Block in the context of Rodinia and the subsequent Gondwanaland. Mica schist from the middle part of the Yanjing Group contains dominant Neoproterozoic detrital zircons (0.72–0.80 Ga) with a pronounced age peak at 0.75 Ga. Based on the euhedral to subhedral shapes, high Th/U ratios and exclusively positive εHf(t) values (+ 6 to + 14) for the zircon crystals, and the lack of ancient zircons, we consider the sediments as products of proximal deposition near a Neoproterozoic subduction system in western Yangtze. Combined with the age of rhyolite from the lower part of the Yanjing Group, these strata were estimated to have been deposited in a period between 0.72 and 0.63 Ga. In contrast, the Silurian–Devonian sediments exhibit dominant Grenvillian ages (0.9–1.0 Ga), with middle Neoproterozoic (0.73–0.85 Ga), Pan-African (0.49–0.67 Ga) and Neoarchean (~ 2.5 Ga) age populations, suggesting a significant change of sedimentary provenance and thus a different tectonic setting. Although the shift occurred in the Silurian, the age spectra turn to be consistent along the western margin of the Yangtze Block until the Devonian, indicating persistence of the same sedimentary environment. However, the related provenance of these Paleozoic sediments cannot be found in South China. The presence of abundant Grenvillian, Pan-African and Neoarchean ages, along with their moderately to highly rounded shapes, indicates the possibility of exotic continental terrane(s) as a possible sedimentary provenance. Considering the potential source areas around the Yangtze Block when it was part of the Rodinia or Gondwana, we suggest that the source of these Paleozoic sediments had typical Gondwana affinities such as the Himalaya region, north India, which is also supported by their stratigraphic similarity, newly published paleomagnetic data and the tectono-thermal events of northwestern fragments of Gondwana. This implies that after a prolonged subduction in the Neoproterozoic, the western margin of the Yangtze Block began to incorporate into the assembly of the Gondwana supercontinent and was able to accept sediments from northwestern margin of Gondwanaland as a result of early Paleozoic orogeny.  相似文献   

14.
Steroids with unconventional side chains have increasingly been applied as diagnostic markers for geological source and age assessments. However, one of the most distinctive characteristics, the abnormal abundance of pregnane and homopregnane in ancient sediments and petroleum, remains unresolved. Higher pregnane and homopregnane, as well as C23–C26 20-n-alkylpregnanes, relative to the regular steranes were observed in samples collected from different petroleum basins in China. These included Precambrian marine carbonate-derived petroleum (NW Sichuan Basin), Lower Paleozoic marine marl derived crude oils (Tarim Basin), and Eocene hypersaline lacustrine carbonate source rocks and associated petroleum (Bohai Bay Basin). However, all of the samples have many common biomarker characteristics, such as pristane/phytane ratios < 1, low amounts of diasteranes and high C29/C30 hopane (∼0.6–1), C35/C34 hopane (mostly  1) and dibenzothiophene/phenanthrene (DBT/PHEN, mostly 0.5–1) ratios revealing a contribution from anoxic carbonate/marl source rocks deposited in restricted, clastic-starved settings. We suggest that 5α,l4β,l7β-pregnane and homopregnane, as well as their higher C23–C26 homologues, are geological products derived from steroids bound to the kerogen by a sulfurized side chain. Carbon or carbonate minerals are considered to be natural catalysts for this cracking reaction via preferential cleavage of the bond between C-20 and C-22. Similar distributions occur in the short chain analogues of 4-methylsterane, triaromatic steroid and methyltriaromatic steroid hydrocarbons, providing circumstantial evidence for this proposal. The ratio of pregnane and homopregnane to the total regular steranes and the ratio of C27 diasteranes to cholestanes can be sensitive indicators of sedimentary environments and facies. In general, high diasteranes and low pregnanes (with homologues) indicate an oxic water column or significant input of terrigenous organic matter in clay rich source rocks and some organic lean carbonate rocks. Low diasteranes with high pregnanes implies restricted, sulfur rich conditions, typical of anoxic carbonate source rocks. Furthermore, the two ratios may be useful to assess the variation of mineralogy and openness of source rock depositional settings.  相似文献   

15.
《Gondwana Research》2014,25(3-4):865-885
Exhumation of middle and lower crustal rocks during the 450–320 Ma intraplate Alice Springs Orogeny in central Australia provides an opportunity to examine the deep burial of sedimentary successions leading to regional high-grade metamorphism. SIMS zircon U–Pb geochronology shows that high-grade metasedimentary units recording lower crustal pressures share a depositional history with unmetamorphosed sedimentary successions in surrounding sedimentary basins. These surrounding basins constitute parts of a large and formerly contiguous intraplate basin that covered much of Neoproterozoic to early Palaeozoic Australia. Within the highly metamorphosed Harts Range Group, metamorphic zircon growth at 480–460 Ma records mid-to-lower crustal (~ 0.9–1.0 GPa) metamorphism. Similarities in detrital zircon age spectra between the Harts Range Group and Late Neoproterozoic–Cambrian sequences in the surrounding Amadeus and Georgina basins imply that the Harts Range Group is a highly metamorphosed equivalent of the same successions. Maximum depositional ages for parts of the Harts Range Group are as low as ~ 520–500 Ma indicating that burial to depths approaching 30 km occurred ~ 20–40 Ma after deposition. Palaeogeographic reconstructions based on well-preserved sedimentary records indicate that throughout the Cambro–Ordovician central Australia was covered by a shallow, gently subsiding epicratonic marine basin, and provide a context for the deep burial of the Harts Range Group. Sedimentation and burial coincided with voluminous mafic magmatism that is absent from the surrounding unmetamorphosed basinal successions, suggesting that the Harts Range Group accumulated in a localised sub-basin associated with sufficient lithospheric extension to generate mantle partial melting. The presently preserved axial extent of this sub-basin is > 200 km. Its width has been modified by subsequent shortening associated with the Alice Springs Orogeny, but must have been > 80 km. Seismic reflection data suggest that the Harts Range Group is preserved within an inverted crustal-scale half graben structure, lending further support to the notion that it accumulated in a discrete sub-basin. Based on palaeogeographic constraints we suggest that burial of the Harts Range Group to lower crustal depths occurred primarily via sediment loading in an exceptionally deep Late Cambrian to Early Ordovician intraplate rift basin. High-temperature Ordovician deformation within the Harts Range Group formed a regional low angle foliation associated with ongoing mafic magmatism that was coeval with deepening of the overlying marine basin, suggesting that metamorphism of the Harts Range Group was associated with ongoing extension. The resulting lower crustal metamorphic terrain is therefore interpreted to represent high-temperature deformation in the lower levels of a deep sedimentary basin during continued basin development. If this model is correct, it indicates that regional-scale moderate- to high-pressure metamorphism of supracrustal rocks need not necessarily reflect compressional thickening of the crust, an assumption commonly made in studies of many metamorphic terrains that lack a palaeogeographic context.  相似文献   

16.
The petrology, geochemistry, geochronology, and Sr–Nd–Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402–447 Ma for the S-type and 419–451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18–0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71–1.16). The initial (87Sr/86Sr) values are 0.708848–0.713651 for the S-type and 0.704230–0.718108 for the I-type granitoids. The εNd(450 Ma) values are − 8.9–−4.1 and − 9.7–+ 1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5–2.4 Ga for the S-type and 1.0–2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.  相似文献   

17.
Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hf-isotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A meta-felsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 ± 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200–1060 Ma), younger Grenvillian (~ 960 Ma) and Pan-African (650–500 Ma), with εHf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an “Asian Hun superterrane” (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440–420 Ma when this “Asian Hun superterrane” collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.  相似文献   

18.
New LA-ICP-MS U–Pb detrital zircon ages from Ediacaran and Paleozoic siliciclastic rocks are used to constrain provenance and paleogeographic affinities of the Teplá-Barrandian unit (TBU) in the centre of the Bohemian Massif (Central Europe, Czech Republic). The samples taken span the period from ≤ 635 Ma to ~ 385 Ma and permit recognition of provenance changes that reflect changes in geotectonic regime. Detrital zircon age spectra of two Ediacaran, one Lower Cambrian and three Upper Ordovician samples resemble the ages known from the NW African proportion of Gondwana, particularly the Trans-Saharan belt, while three rocks from higher Lower Cambrian to Lowermost Ordovician strata contain detritus that may have been derived exclusively from local sources. The age spectrum of the Devonian rock is a combination of the NW Gondwanan and local features. These new findings in combination with a wide range of published data are in agreement with a Neoproterozoic subduction-related setting at the margin of Gondwana followed by a Cambrian/Early Ordovician rifting stage and an Ordovician passive margin setting. Furthermore the data are in favour of a position of the TBU at the Gondwanan margin throughout pre-Variscan times.  相似文献   

19.
The tectonic history of the Kyrgyz South Tianshan in the western Central Asian Orogenic Belt (CAOB) remains controversial, first of all, due to the limited amount of geochemical and isotope data. Our paper presents the first results of a detailed geochemical study (major and trace elements, Sr, Nd and Pb isotopes) of Middle Paleozoic mafic volcanic and subvolcanic rocks of the Ferghana and Atbashi–Kokshaal accretionary belts of the South Tianshan orogen in Kyrgyzstan, which formed during the evolution of the Turkestan Ocean. A special focus is given to the relation between magmatic rocks and sedimentary units of marine origin, chert, siliceous shale/mudstone, volcanogenic–carbonate clastics, seamount carbonates, and turbidites, which we consider as elements of Ocean Plate Stratigraphy (OPS). The age range of marine sediments is Late Silurian to Early Carboniferous, but the age of the most volcanic rocks associated with fossil-bearing OPS sediments is Devonian. The magmatic rocks have geochemical affinity to oceanic island basalts (OIB-type) and, to a lesser extent, mid-oceanic ridge (MORB-type) basalts associated with hemipelagic siliceous mudstone and pelagic chert. The rocks with OIB-type affinity are associated with chert, siliceous shale and carbonaceous clastics and carbonates. They are enriched in TiO2, LREE (La/Smn = 1.9), and Nb (Zr/Nbav. = 10), have differentiated HREE (Gd/Ybn = 2.0), medium to low εNd (~ 5.7) and are characterized by clear Nb positive anomalies in normalized multi-element plots (Nb/Thpm = 1.3, Nb/Lapm = 1.1). The OIBs formed by relatively low degrees of melting (< 5%) of mantle sources in the garnet stability field and erupted in an oceanic island setting. The MORB-type samples associated with siliceous mudstone and chert are less enriched in incompatible elements, possess flat REE and multi-element pattern, and show higher εNd values (~ 9.1); they were probably produced by high-degree melting of spinel lherzolite and/or harzburgite and erupted in a mid-oceanic ridge setting. The geological, lithological and geochronological data suggest that the OPS units with dominantly OIB-type basalts formed at one or several seamount chains of the Turkestan Ocean, which were accreted to the Kazakhstan continent, and thus contribute to our understanding of the Paleozoic tectonic evolution of the western CAOB during the Serpukhovian–Bashkirian.  相似文献   

20.
Sr-Nd-Pb-Hf isotope mapping combined with U-Pb zircon SHRIMP ages of granitoids from four sampling profiles across terrane boundaries in Uzbekistan reveal distinct reservoir types (cratonic and accretionary), witnessed by the diverse nature and origin of the predominant Paleozoic granitic magmatism that provided hosts for major ore-bodies. The study region comprises four major terranes, including 1) the Sultan-Uvais terrane, 2) the Kyzylkum-Nurata Segment and 3) the Gissar Segment of the South Tien Shan and 4) the Chatkal-Kurama terrane of the Middle Tien Shan. Sr-Nd isotope analyses show a wide range of εNdt (− 5 to + 7) and (87Sr/86Sr)t of 0.704–0.707, indicating involvement of both mantle-derived material and older crustal sources. A wide range of Hf-isotope compositions found in zircons of Chatkal-Kurama granites, Middle Tien Shan (εHf mainly ~  5 to + 5), could be due to recycling of older crustal protolith(s); in particular, the earliest (Silurian) granites may be directly derived from 1.5 to 1.7 Ga lower crust. In the Southern Tien Shan, some involvement of subducted oceanic crust is evidenced by strongly juvenile εHft values of up to + 14 and + 16 (Sultan-Uvais, Teskuduk-Kyzylkum). Permo-Carboniferous granitoids, which occur across all terranes also exhibit a wide range of isotope signatures, corresponding to Mesoproterozoic–Neoproterozoic crustal protoliths with a westward increase in juvenile contributions. Pb isotopes (whole-rock) imply the dominance of a crustal component and crust-mantle mixing processes. New age data confirmed: 1) old age of the Turkestan Ocean (505 Ma in Sultan-Uvais), 2) fragments of Silurian island arcs in the accretionary complex of the Chatkal-Kurama terrane (granites of 429–416 Ma) and in the upper allochthon of the South Tien Shan (gabbro 438 Ma in Tamdytau), and 3) a significant volume of granitoid magmatism of subduction or early-collisional stages (around 320–310 Ma) in the Chatkal-Kurama Segment and especially in the Gissar Segment. The westernmost part of the Tien Shan is characterized by multiple subduction processes responsible for 300 million years of geodynamic evolution history (accretionary collage, crustal growth) with the pre-Mesozoic crust formation concluded by Permian post-collisional extensional magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号