首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The physical properties of clay allow argillaceous formations to be considered geological barriers to radionuclide migration in high-level radioactive-waste isolation systems. As laboratory simulations are short term and numerical models always involve assumptions and simplifications of the natural system, natural analogues are extremely attractive surrogates for the study of long-term isolation. The clays of the Orciatico area (Tuscany, Central Italy), which were thermally altered via the intrusion of an alkali-trachyte laccolith, represent an interesting natural model of a heat source which acted on argillaceous materials. The study of this natural analogue was performed through detailed geoelectrical and soil–gas surveys to define both the geometry of the intrusive body and the gas permeability of a clay unit characterized by different degrees of thermal alteration. The results of this study show that gas permeability is increased in the clay sequences subjected to greater heat input from the emplacement of the Orciatico intrusion, despite the lack of apparent mineral and geotechnical variations. These results, which take into consideration long time periods in a natural, large-scale geological system, may have important implications for the long-term safety of underground storage of nuclear waste in clay formations.  相似文献   

4.
Our study at this natural analog site contributes to the evaluation of methods within a hierarchical monitoring concept suited for the control of CO2 degassing. It supports the development of an effective monitoring concept for geological CO2 storage sites—carbon capture and storage as one of the pillars of the European climate change efforts. This study presents results of comprehensive investigations along a 500-m long profile within the Hartou?ov (Czech Republic) natural CO2 degassing site and gives structural information about the subsurface and interaction processes in relation to parameters measured. Measurements of CO2 concentrations and investigation of the subsurface using electrical resistivity tomography and self-potential methods provide information about subsurface properties. For their successful application it is necessary to take seasonal variations (e.g., soil moisture, temperature, meteorological conditions) into consideration due to their influence on these parameters. Locations of high CO2 concentration in shallow depths are related to positive self-potential anomalies, low soil moistures and high resistivity distributions, as well as high δ13C values and increased radon concentrations. CO2 ascends from deep geological sources via preferential pathways and accumulates in coarser sediments. Repetition of measurements (which includes the effects of seasonal variations) revealed similar trends and allows us to identify a clear, prominent zone of anomalous values. Coarser unconsolidated sedimentary layers are beneficial for the accumulation of CO2 gas. The distribution of such shallow geological structures needs to be considered as a significant environmental risk potential whenever sudden degassing of large gas volumes occurs.  相似文献   

5.
The Zhuxi deposit is a recently discovered W–Cu deposit located in the Jiangnan porphyry–skarn W belt in South China. The deposit has a resource of 3.44 million tonnes of WO3, making it the largest on Earth,however its origin and the evolution of its magmatic–hydrothermal system remain unclear, largely because alteration–mineralization types in this giant deposit have been less well-studied, apart from a study of the calcic skarn orebodies. The different types of mineralization can be classified into magnesian skarn, calcic skarn, and scheelite–quartz–muscovite(SQM) vein types. Field investigations and mineralogical analyses show that the magnesian skarn hosted by dolomitic limestone is characterized by garnet of the grossular–pyralspite(pyrope, almandine, and spessartine) series, diopside, serpentine,and Mg-rich chlorite. The calcic skarn hosted by limestone is characterized by garnet of the grossular–andradite series, hedenbergite, wollastonite, epidote, and Fe-rich chlorite. The SQM veins host highgrade W–Cu mineralization and have overprinted the magnesian and calcic skarn orebodies. Scheelite is intergrown with hydrous silicates in the retrograde skarn, or occurs with quartz, chalcopyrite, sulfide minerals, fluorite, and muscovite in the SQM veins.Fluid inclusion investigations of the gangue and ore minerals revealed the evolution of the ore-forming fluids, which involved:(1) melt and coexisting high–moderate-salinity, high-temperature, high-pressure(>450 ℃and >1.68 kbar), methane-bearing aqueous fluids that were trapped in prograde skarn minerals;(2) moderate–low-salinity, moderate-temperature, moderate-pressure(~210–300 ℃and ~0.64 kbar),methane-rich aqueous fluids that formed the retrograde skarn-type W orebodies;(3) low-salinity,moderate–low-temperature, moderate-pressure(~150–240 ℃and ~0.56 kbar), methane-rich aqueous fluids that formed the quartz–sulfide Cu(–W) orebodies in skarn;(4) moderate–low-salinity,moderate-temperature, low-pressure(~150–250 ℃and ~0.34 kbar) alkanes-dominated aqueous fluids in the SQM vein stage, which led to the formation of high-grade W–Cu orebodies. The S–Pb isotopic compositions of the sulfides suggest that the ore-forming materials were mainly derived from magma generated by crustal anatexis, with minor addition of a mantle component. The H–O isotopic compositions of quartz and scheelite indicate that the ore-forming fluids originated mainly from magmatic water with later addition of meteoric water. The C–O isotopic compositions of calcite indicate that the ore-forming fluid was originally derived from granitic magma, and then mixed with reduced fluid exsolved from local carbonate strata. Depressurization and resultant fluid boiling were key to precipitation of W in the retrograde skarn stage. Mixing of residual fluid with meteoric water led to a decrease in fluid salinity and Cu(–W) mineralization in the quartz–sulfide stage in skarn. The high-grade W–Cu mineralization in the SQM veins formed by multiple mechanisms, including fracturing, and fluid immiscibility, boiling, and mixing.  相似文献   

6.
Understanding the spatial distribution, stocks, and influencing factors of soil organic carbon (SOC) is important for understanding the current situation of SOC in alpine meadow ecosystems on the Qinghai–Tibetan Plateau (QTP). We sampled 23 soil profiles to a depth of 50 cm in a 33.5 hm\(^{2}\) plot in a typical meadow on the central QTP. The distribution, stock and influencing factors of SOC was then analyzed. The mean density of soil carbon content (SOCD) was 2.28 kg m\(^{-2}\) with a range of 5.99 kg  m\(^{-2}\). SOCD in the 0–10 cm layer was 3.94 kg m\(^{-2}\) and decreased quadratically with depth. The total stock of SOC to a depth of 50 cm was ca. 2950 t, the 0–10 and 0–30 cm layers accounting for 38 and 80%, respectively. SOCD varied moderately spatially and was distributed more homogeneously in the 0–10 and 40–50 cm layers but was more variable in the middle three layers. SOCD was significantly correlated positively with soil-water content, total porosity, and silt content and negatively with soil pH, bulk density, stone content and sand content. This study provides an important contribution to understanding the role of alpine meadows in the global carbon cycle. It also provides field data for model simulation and the management of alpine meadow ecosystems.  相似文献   

7.
8.
The type and kinetics of metamorphic CO2-producing processes in metacarbonate rocks is of importance to understand the nature and magnitude of orogenic CO2 cycle. This paper focuses on CO2 production by garnet-forming reactions occurring in calc-silicate rocks. Phase equilibria in the CaO–FeO–Al2O3–SiO2–CO2–H2O (CFAS–CO2–H2O) system are investigated using PT phase diagrams at fixed fluid composition, isobaric TX(CO2) phase diagram sections and phase diagram projections in which fluid composition is unconstrained. The relevance of the CFAS–CO2–H2O garnet-bearing equilibria during metamorphic evolution of calc-silicate rocks is discussed in the light of the observed microstructures and measured mineral compositions in two representative samples of calc-silicate rocks from eastern Nepal Himalaya. The results of this study demonstrate that calc-silicate rocks may act as a significant CO2 source during prograde heating and/or early decompression. However, if the system remains closed, fluid–rock interactions may induce hydration of the calc-silicate assemblages and the in situ precipitation of graphite. The interplay between these two contrasting processes (production of CO2-rich fluids vs. carbon sequestration through graphite precipitation) must be considered when dealing with a global estimate of the role exerted by decarbonation processes on the orogenic CO2 cycle.  相似文献   

9.
The present study investigates the bioavailability, soil to plant transfer and health risks of arsenic (As) in the coastal part of Chianan Plain in southwestern Taiwan. Groundwater used for irrigation, surface soils from agricultural lands and locally grown foodstuffs were collected from eight locations and analyzed for As to assess the risks associated with consuming these items. The concentration of As in groundwater ranged from 13.8 to 881 μg/L, whereas surface soil showed total As content in the range of 7.92–12.7 mg/kg. The available As content in surface soil accounted for 0.06–6.71% of the total As content, and was significantly correlated with it (R2 = 0.65, p < 0.05). Among the leachable fraction, the organic matter (3.23–54.8%) and exchangeable portions of oxides (6.03–38.4%) appear to be the major binding phases of As. The average As content in fourteen studied crops and vegetables varied from 10.3 to 151 μg/kg with maximum in mustard and minimum in radish. All the plants showed considerably higher As content (21.5 ± 3.64–262 ± 36.2 μg/kg) in their roots compared to the edible parts (9.15 ± 1.44–75.8 ± 22.9 μg/kg). The bioaccumulation factor (BAF) based on total As (ranging from 0.0009 to 0.144) and available As in soil (ranging from 0.039 to 0.571) indicate that mustard, rice, amaranth and spinach are the highest accumulators of As. Although the health risk index (HRI) of the studied crops and vegetables ranged from only 0.0068–0.454, with the maximum in rice, the combined HRI indicates an alarming value of 0.88. Therefore, the possible health risks due to long-term consumption of rice and other As-rich foodstuffs could be overcome by controlling the contamination pathways in the water–soil–plant system.  相似文献   

10.
The Haenam volcanic field was formed in the southern part of the Korean peninsula by the climactic igneous activity of the Late Cretaceous. The volcanic field hosts more than nine hydrothermal clay deposits and two epithermal Au–Ag deposits. This study focuses on the relationship between hydrothermal clay alteration and epithermal Au–Ag mineralization based on the geology, alteration mineralogy, geochronology, and mineralization characteristics.These clay and epithermal Au–Ag deposits are interpreted to have formed by the same hydrothermal event which produced two distinct types of mineral systems: 1) Au-dominant epithermal Au–Ag deposit and 2) clay-dominant hydrothermal clay deposit. The two types of mineral systems show a close genetic relationship as suggested by their temporal and spatial relationships. The Seongsan hydrothermal system progressively evolved from a low-intermediate sulfidation epithermal system with Au–Ag mineralization and phyllic alteration to an acid–sulfate high-sulfidation system with Au–Ag mineralization and/or barren advanced argillic/argillic alteration. The Seongsan system evolved during post volcanic hydrothermal activity for at least 10 Ma in the Campanian stage of the late Cretaceous.The Seongsan hydrothermal system shows the rare and unique occurrence of superimposed high to low (intermediate) sulfidation episodes, which persisted for about 10 Ma.  相似文献   

11.
The study proposes geological evolution models for the cliff slopes of the two Italian towns of Orvieto (Umbria) and Radicofani (Tuscany). The models were validated by the use of a stress–strain numerical modelling, implemented by the finite-difference code FLAC 5.0. The numerical modelling was approached in a sequential way, by assuming specific stiffness values related to the evolutionary stages. For this purpose, unconventional laboratory tests were performed aiming at reproducing the stress path related to the geological evolution model, using standard equipment for CID triaxial testing. The geological evolution models infer that deformation in both cases is driven by stress reduction. At the Orvieto plateau, stress reduction is induced by stress relief involving a tuff plate; in the case of Radicofani, stress reduction is due to stress release in consequence of lateral erosion of clay. Numerical simulations refine the lithotechnical zoning of the two investigated slopes, introducing a stress–strain criterion in addition to the conventional geological and geomechanical ones.  相似文献   

12.
The composition of volatile components in picroilmenites from Yakutian kimberlitic pipes of various ages (the Olivinovaya, Malokuonapskaya, and Udachnaya–East pipes) was studied for the first time by means of gas chromatography–mass spectrometry (GC-MS). It was shown that picroilmenites and olivines from same kimberlitic pipes contained volatile components of close composition, whereas these components were quite different in these minerals from different pipes. These features point to a common source and represent the specificity of the magma chamber formed under the pronounced influence of hydrocarbons with their derivates, as well as nitrogen-, chlorine-, and sulfur-containing compounds. The fraction of hydrocarbons and derivates in the composition of volatile matter is as high as 99%, including 9.7% of chlorine- and fluorinecontaining compounds.  相似文献   

13.
In order to understand better the chemistry of soil proteinaceous material, there is a need for an effective extraction and purification method for different types of soil. The aim of this study was to test the effectiveness of different extractants and of phenol extraction for the extraction and purification of native soil proteinaceous material and the added protein (bovine serum albumin, BSA) from different types of soil, and to test the applicability of matrix-assisted laser desorption/ionizationtime-of-flight-mass spectrometry (MALDI–TOF-MS) for the analysis of soil proteinaceous material. Extraction of three types of boreal soil was carried out with water or different buffers. Purification of the extracted proteinaceous material was carried out with phenol extraction, the concentration being measured using Bradford’s method, and the analysis performed with MALDI–TOF-MS. The concentration of extracted proteinaceous material was dependent on the soil and the extractant, and the amount of N in the extracted material was ca. 3–90% of soil total N, being highest for sandy soil and lowest for highly organic forest floor and fine-textured clay soil. Non-purified extracts contained high amounts of non-proteinaceous (e.g. humic) material, especially the highly organic soil; this material may cause artifacts with Bradford’s method. The recovery of BSA was dependent on soil and extractant, suggesting a different sorption mechanism for different types of soil. MALDI–TOF-MS spectra suggested that the molecular weight of the extracted compounds was mainly <10 kDa, but compounds in the range ca. 15–50 kDa were also detected. However, individual compounds could not be identified.  相似文献   

14.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   

15.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   

16.
《Organic Geochemistry》1999,30(2-3):101-117
Refractory (insoluble and nonhydrolyzable) organic matter (ROM) was studied in sediments underlying the north–west African upwelling system. Two core samples: beginning of glacial isotope stage 4 (ca. 70,000 yr BP; depth bsf 360 cm) and interglacial isotope substage 5d (ca. 90,000 yr BP; depth bsf 480 cm) were analyzed, along with a surface sample. ROM, which accounts for a substantial part of the total organic matter (OM) in these sediments (ca. 20% for the two core samples and 10% for the surface sample), was isolated and examined for its morphological and chemical features using a combination of transmission and scanning electron microscopy, spectroscopy (FTIR, solid state 13C NMR) and analytical pyrolysis (Curie point flash pyrolysis–GC–MS). These studies allowed the chemical structure of the three ROMs (chiefly based on melanoidin-type macromolecules) and their mechanism of formation (degradation–recondensation of products mainly derived from proteinaceous material) to be established. Such a formation probably began in the water column and continued within the sediment upper layers. Important differences, concerned both with OM chemical structure and preservation mechanism, were noted upon comparison with recently studied sediments underlying the Peru upwelling system. These differences between the two systems, in spite of similarities in primary production, must reflect the combined influence of factors such as upwelling intensity (primary productivity), water depth and iron supply.  相似文献   

17.
The mineralogical and chemical evolution of ochreous precipitates forming from acid mine drainage (AMD) from the abandoned Libiola Fe–Cu-sulfide mine (Eastern Liguria, Italy) was followed through a multianalytical approach (XRD, TEM, XRF, ICP) applied to surface precipitates and associated waters collected from several mine adits. The mineralogy of the precipitates changed significantly as a consequence of the variations of the chemical parameters of the circulating solutions (mainly pH, Eh, and sulfate concentrations) which, in turn, were mainly controlled by mixing with unpolluted stream and rill waters of the mining area. A progressive transition from jarosite-, to schwertmannite-, to goethite-, to ferrihydrite-, to amorphous-dominated precipitates was observed, mainly as a consequence of an increase in the pH of the associated solutions. This mineralogical evolution agrees well with the aqueous speciation and Eh–pH stability calculations performed on the waters associated with the different precipitate types. Furthermore, TEM analysis indicated that metastable pristine phases (schwertmannite) tend to transform progressively to well-crystallized more stable species, here represented by goethite. The comparison of the water chemistry and the crystal chemistry of the different precipitates showed a significant decrease in the Zn, Cu, Ni, Co contents in waters where the coexisting precipitates were almost exclusively composed of goethite. The distribution of V, Sr, As concentrations within the different precipitates showed that the most efficient scavenging phase for these elements was jarosite, whereas ferrihydrite efficiently took up Pb ions, and schwermannite acted as a natural sink for Cr.  相似文献   

18.
Wei  Xiaofeng  Sun  Houyun  Chen  Zirang  Li  Xia  Wei  Hao  Jia  Wenru  Li  Wei 《中国地球化学学报》2022,41(5):839-860
Acta Geochimica - In order to probe the geochemical relationship between the quality of economic crops and ecological geochemistry, this project studies the chestnut production area of Chengde...  相似文献   

19.
The Eastern Qinling, Central China, containing more than 20 Mesozoic porphyry ± skarn systems, is the most important Mo province in the world. The Shangfanggou giant Mo deposit, Luanchuan County, Henan Province, is a porphyry-skarn system hosted in a lithologic association comprising carbonaceous sandstone, shale, carbonate and chert within the Neoproterozoic Luanchuan Group. Mo ores are mainly altered porphyry, skarn and hornfels, with minor altered gabbro. The mineralization process includes four stages, potassic alteration of the porphyry and skarnization of dolomite marble in stage 1, stockworks of quartz + molybdenite ± sulfide (stage 2), pyrite + quartz ± sulfides (stage 3), and carbonate ± quartz ± fluorite (stage 4), respectively. Mo mineralization was generally associated with strong silicification and/or phyllic alteration. The fluid inclusions in minerals include three compositional types, i.e., CO2-bearing (C-type), aqueous (W-type) and daughter mineral-bearing (S-type). Minerals formed in stages 1 to 3 contain all the three types of FIs, but the stage 4 minerals only contain the W-type FIs. Oxides and Cu-phosphate are recognized as daughter minerals in S-type inclusions in minerals of stage 1, whereas the daughter sulfide and reducing gases such as CO, CH4, H2S and C2H6 can be observed in quartz of stages 2 and 3, suggesting that the ore-forming fluids were initially oxidizing and then evolved to reducing. Boiling fluid inclusion assemblages can be observed in minerals formed in stage 2 or earlier, but not in stage 3 or later. Fluid boiling caused CO2 escape, oxygen fugacity decrease and rapid precipitation of ore minerals, and was a key factor causing Mo-mineralization at Shangfanggou. Data and interpretations presented in this contribution show that the fluids forming the Shangfanggou Mo deposit evolved from CO2-rich, high-salinity hypothermal, to CO2-poor, low-salinity epithermal (low-T). The Mo mineralization at the Shangfanggou deposit mainly occurred at depth of 6.6–7.0 km, deeper than the majority of porphyry systems in volcanic arcs, which resulted from a CO2-rich magma–fluid system originating from partial melting of thickened lower crust. The Shangfanggou mineral system developed during 158–134 Ma when the Yangtze–North China continental collision began to evolve from compression to extension. Magmatic hydrothermal deposits developed in a continental collision regime are generally formed by CO2-rich, high-salinity fluids.  相似文献   

20.
We present a high-resolution sedimentological analysis of Barremian–Aptian shallow-water carbonates from two cores (S. Maria 6 and 4) that were drilled in the central Apennines (central Italy) and one section (Monte Faito) that crops out in the southern Apennines (southern Italy). The aims of this work are (a) to propose a high-resolution correlation of sections that are located approximately 170 km apart in different tectonic units and paleogeographic domains using a microstratigraphic (cm-scale) approach and (b) to reveal global and regional mechanisms that control the stratigraphic architecture of these carbonate platform strata.A composite S. Maria section was assembled by integrating the sedimentologic and biostratigraphic analyses of the two cores, which overlap each other across the Barremian–Aptian boundary. Both the S. Maria and the Monte Faito sections show repetitive facies patterns that are expressed as elementary cycles, which are hierarchically grouped into bundles and superbundles. The elementary cycles are meter-scale sedimentary units that are bounded by subaerial erosion surfaces, which directly overlie subtidal deposits. This implies that they formed under the influence of relative sea-level fluctuations. In both sections, the superbundles are organized into Transgressive/Regressive Facies Trends (T/RFTs), which are considered to be expressions of lower-frequency relative sea-level changes.These deposits, like their Cretaceous analogues of other areas of the Apennines, show evidence of astronomically controlled eustatic oscillations, which are reflected in the hierarchical organization of their stacking patterns. They also exhibit a sequence-stratigraphic configuration that is best recognizable in the superbundles and T/RFTs. Based on integrated stratigraphic criteria, a high-resolution regional correlation between S. Maria and Monte Faito was developed and compared with the reference section of Monte Raggeto (M. Maggiore, southern Apennines, Italy), where biostratigraphic and cyclostratigraphic studies have been complemented by magneto- and isotope-stratigraphy.We also propose a chronostratigraphic correlation between our T/RFTs and the Tethyan stratigraphic cycles of Hardenbol et al. (1998). Based on the cyclostratigraphic interpretation and orbital chronostratigraphy of the studied interval, we estimate a minimum duration of 5.2 my for the Barremian interval, which is similar to the 4.5 my duration from the Geological Time Scale of Gradstein et al., (2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号