首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterizing hydraulic conductivity with the direct-push permeameter   总被引:2,自引:0,他引:2  
The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a depth at which a K estimate is desired. A short hydraulic test is then performed by injecting water through the screen at a constant rate (less than 4 L/min) while pressure changes are monitored at the transducer locations. Hydraulic conductivity is calculated using the injection rate and the pressure changes in simple expressions based on Darcy's Law. In units of moderate or higher hydraulic conductivity (more than 1 m/d), testing at a single level can be completed within 10 to 15 min. Two major advantages of the method are its speed and the insensitivity of the K estimates to the zone of compaction created by tool advancement. The potential of the approach has been assessed at two extensively studied sites in the United States and Germany over a K range commonly faced in practical field investigations (0.02 to 500 m/d). The results of this assessment demonstrate that the DPP can provide high-resolution K estimates that are in good agreement with estimates obtained through other means.  相似文献   

2.
Having immediate, automated field access to data gathered during geological and hydrogeological investigations can be crucial to definition of the scope and direction of test procedures, as well as to the interpretability of results. A portable, briefcase-sized data collection and analysis instrument has therefore recently been developed. It is capable of operating as a standalone or operator-guided field unit. This terminal is pre-programmed for a number of standard applications, several of which involve BAT® tools, e.g., permeability tests made using the BAT Ground Water Monitoring System. It can, however, be used with a wide range of other tools for controlling data collection during pumping, penetration and pressometer tests, etc.
An operator's terminal and independent data collection microcontroller are the major components of this system. Data may be collected from any combination of four ports: an internal, programmable interval timer, a pulser (shaft encoder), and two 14-bit analog-to-digital (A/D) inputs. The latter are primarily used for pressure or resistance transducers. Reading of data may be triggered automatically by the timer and/or pulser, or be performed upon operator command. Many thousands of data points may be stored in the microcontroller, representing one or several tests of any type, intermixed. Via the operator's terminal, any subset of this stored data may be examined, erased, modified or analyzed. A 26-character LCD display and a four-color printer/plotter are used to record data and results of analyses. Data may also be transferred to an external computer for more extensive manipulation.
Three examples of how this terminal may be used in the field in connection with site investigations are presented in this paper. They involve (a) measurement of saturated hydraulic conductivity, (b) determination of soil stratigraphy using pore pressure sounding, and (c) water network profiling.  相似文献   

3.
Techniques for characterizing the hydraulic properties and groundwater flow processes of aquifers are essential to design hydrogeologic conceptual models. In this study, rapid time series temperature profiles within open‐groundwater wells in fractured rock were measured using fiber optic distributed temperature sensing (FO‐DTS). To identify zones of active groundwater flow, two continuous electrical heating cables were installed alongside a FO‐DTS cable to heat the column of water within the well and to create a temperature difference between the ambient temperature of the groundwater in the aquifer and that within the well. Additional tests were performed to examine the effects of pumping on hydraulic fracture interconnectivity around the well and to identify zones of increased groundwater flow. High‐ and low‐resolution FO‐DTS cable configurations were examined to test the sensitivities of the technique and compared with downhole video footage and geophysical logging to confirm the zones of active groundwater flow. Two examples are presented to demonstrate the usefulness of this new technique for rapid characterization of fracture zones in open boreholes. The combination of the FO‐DTS and heating cable has excellent scope as a rapid appraisal tool for borehole construction design and improving hydrogeologic conceptual models.  相似文献   

4.
Cain SF  Davis GA  Loheide SP  Butler JJ 《Ground water》2004,42(6-7):939-944
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.  相似文献   

5.
We present the first demonstration of hydraulic tomography (HT) to estimate the three-dimensional (3D) hydraulic conductivity (K) distribution of a fractured aquifer at high-resolution field scale (HRFS), including the fracture network and connectivity through it. We invert drawdown data collected from packer-isolated borehole intervals during 42 pumping tests in a wellfield at the former Naval Air Warfare Center, West Trenton, New Jersey, in the Newark Basin. Five additional tests were reserved for a quality check of HT results. We used an equivalent porous medium forward model and geostatistical inversion to estimate 3D K at high resolution (K blocks <1 m3), using no strict assumptions about K variability or fracture statistics. The resulting 3D K estimate ranges from approximately 0.1 (highest-K fractures) to approximately 10−13 m/s (unfractured mudstone). Important estimated features include: (1) a highly fractured zone (HFZ) consisting of a sequence of high-K bedding-plane fractures; (2) a low-K zone that disrupts the HFZ; (3) several secondary fractures of limited extent; and (4) regions of very low-K rock matrix. The 3D K estimate explains complex drawdown behavior observed in the field. Drawdown tracing and particle tracking simulations reveal a 3D fracture network within the estimated K distribution, and connectivity routes through the network. Model fit is best in the shallower part of the wellfield, with high density of observations and tests. The capabilities of HT demonstrated for 3D fractured aquifer characterization at HRFS may support improved in situ remediation for contaminant source zones, and applications in mining, repository assessment, or geotechnical engineering.  相似文献   

6.
Correlations of seismic noise are commonly used to monitor temporal variations of relative seismic velocity in period ranges from 1 s up to 100 s. Of particular interest is the detection of small changes in the order of 0.01–0.1 % in propagation speeds. Measuring such small differences can, however, be significantly biased by temporal variations in the properties of the noise sources within the corresponding frequency band. Using synthetic data, we show that apparent relative velocity variations might appear only due to changes in the amplitude and frequency content caused by source variations. Removing such unwanted effects by applying narrow bandpass filters in the preprocessing restricts the high-resolution analysis of any signal due to Gabor’s uncertainty limit, i.e., the correlation function suffers a limited resolution to time delay estimates for small correlation times, low-frequency ranges, and in narrow frequency bands. Better understanding of spatiotemporal noise source properties and the theoretical limitations of time–frequency analysis is critical for accurate and reliable passive monitoring.  相似文献   

7.
This paper describes a drive point system for installing small‐diameter (15 to 25 mm ID) piezometers to depths of several metres in unconsolidated sediments. The system fills the gap between (1) heavy duty drive point systems powered by drilling rig hydraulics or air hammers that are capable of installing large diameter drive points to depths of many tens of metres and (2) manually driven systems that typically install 10 mm ID or smaller tubing to depths of <2 m. Unlike many existing systems, which install piezometers inside an outer casing that is later removed, our system protects the piezometer screen inside the casing and extends it only once the casing is driven to the desired depth. This avoids clogging of the screen during installation and the risk of creating an annulus around the piezometer, which can provide a preferential pathway for water movement. The piezometer has a larger diameter than most manually driven systems, and thus has a higher yield; it also permits use of most commercially available pressure transducers and electrical conductivity sensors. The piezometers have been successfully installed to depths of up to 6 m using an electric hammer. The system overcomes some issues associated with existing systems and provides the advantages of affordability, rapid installation, mechanical assistance and manual portability.  相似文献   

8.
In quasi-static and hybrid tests, accurate reproduction of structural responses often requires multi-degree-of-freedom (multi-DOF) loading methods. A successful loading method should not only be used on specific specimens for research purposes, but also be applicable to all possible types of specimen and testing setups for engineering purposes. However, for different specimens, the concerned nodes and DOFs differ in size, leading to non-uniform kinematic transformation between the Cartesian system and the actuators/transducers coordinate systems. While for different testing setups, the type of loading targets on each DOF varies, they can be displacement or force. These diversities together make it difficult to achieve versatility in applying loading methods. To address this challenge, a control nodes based loading method was proposed. This method was constructed based on the viewpoint that any specimen can be treated as a combination of several control nodes, and the loading loop should be constructed on each control node. In this method, at first, the loading targets, actuators and external transducers were assigned to each control node accordingly. Then, the loading loops were constructed based on each control node instead of the entire specimen DOFs, which is capable of achieving uniform kinematic transformation and also convenient to apply redundant controlling. Finally, all the control nodes were assembled in one closed loop to support mixed force-displacement loading considering the coupling of multiple DOFs. Hybrid tests and quasi-static tests of a full-scale steel frame were carried out to demonstrate the accuracy and feasibility of the proposed loading method.  相似文献   

9.
Hydrology requires accurate and reliable rainfall input. Because of the strong spatial and temporal variability of precipitation, estimation of spatially distributed rain rates is challenging. Despite the fact that weather radars provide high-resolution (but indirect) observations of precipitation, they are not used in hydrological applications as extensively as one could expect. The goal of the present review paper is to investigate this question and to provide a clear view of the opportunities (e.g., for flash floods, urban hydrology, rainfall spatial extremes) the limitations (e.g., complicated error structure, need for adjustment) and the challenges for the use of weather radar in hydrology (i.e., validation studies, precipitation forecasting, mountainous precipitation, error propagation in hydrological models).  相似文献   

10.
In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the advantages of using these conservative methods for open channel applications. Results of the numerical experiments are presented and compared to standard algorithm results, analytical solutions and experimental results to demonstrate the robustness of the high-resolution formulation. Finally results of flows with mixed flow conditions (as in hydraulic jump), indicate that the contribution of the Boussinesq pressure term is minimal. Besides showing robustness in capturing shocks in open channel, the results indicate that the effect of the grid spacing on the shock resolution is small. However, for jumps with high Froude numbers, the present formulation slightly underestimates the peak depth.  相似文献   

11.
Flora  A.  Bilotta  E.  Chiaradonna  A.  Lirer  S.  Mele  L.  Pingue  L. 《Bulletin of Earthquake Engineering》2021,19(10):3835-3864

Within the European project LIQUEFACT some activities have been devoted to the experimental verification of the effectiveness of two techniques in the mitigation of soil liquefaction susceptibility: induced partial saturation (IPS) and horizontal drains. After a preliminary check of their efficiency via centrifuge tests, the two techniques have been studied by means of some large scale shaking tests carried out in a field trial located in the Emilia-Romagna Region (Italy). A preliminary extensive in situ and laboratory investigation was necessary to identify the shallow liquefiable soil layer in which the mitigation techniques and the monitoring instrumentations (pore pressure transducers and geophones) had to be installed. Both techniques required the installation of horizontal well screens via a directional controlled drilling technique: the pipes were used as drainage systems (linear HDL and rhomboidal configurations HDR) or for the air injection in the area treated with IPS technique. The in situ experimental evidences showed that both techniques are able to avoid liquefaction triggering, that on the contrary was attained during the tests in the untreated testing area. The processing of in situ data highlighted that the efficiency of the two techniques is strictly related to chosen arrangement of the horizontal drains and the induced degree of saturation.

  相似文献   

12.
Optimized system to improve pumping rate stability during aquifer tests   总被引:1,自引:0,他引:1  
Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Substantial uncertainties in the flow rate across the borehole-formation interface can be induced by dynamic head losses, caused by rapid changes in borehole water levels early in an aquifer test. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system which employs commonly available components (including a datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flowmeters), is inexpensive, highly mobile, and easily set up. It optimizes the flow rate at the borehole-formation interface, making it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. No modifications to the control system were required, although a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically significant, constant flow rate with time. The range in pumping variability (95% confidence interval) was from +/- 2.58 x 10(-4) L/sec to +/- 9.07 x 10(-4) L/sec, across a wide range in field and aquifer conditions.  相似文献   

13.
Many sedimentary basins throughout the world exhibit areas with abnormal pore-fluid pressures (higher or lower than normal or hydrostatic pressure). Predicting pore pressure and other parameters (depth, extension, magnitude, etc.) in such areas are challenging tasks. The compressional acoustic (sonic) log (DT) is often used as a predictor because it responds to changes in porosity or compaction produced by abnormal pore-fluid pressures. Unfortunately, the sonic log is not commonly recorded in most oil and/or gas wells. We propose using an artificial neural network to synthesize sonic logs by identifying the mathematical dependency between DT and the commonly available logs, such as normalized gamma ray (GR) and deep resistivity logs (REID). The artificial neural network process can be divided into three steps: (1) Supervised training of the neural network; (2) confirmation and validation of the model by blind-testing the results in wells that contain both the predictor (GR, REID) and the target values (DT) used in the supervised training; and 3) applying the predictive model to all wells containing the required predictor data and verifying the accuracy of the synthetic DT data by comparing the back-predicted synthetic predictor curves (GRNN, REIDNN) to the recorded predictor curves used in training (GR, REID). Artificial neural networks offer significant advantages over traditional deterministic methods. They do not require a precise mathematical model equation that describes the dependency between the predictor values and the target values and, unlike linear regression techniques, neural network methods do not overpredict mean values and thereby preserve original data variability. One of their most important advantages is that their predictions can be validated and confirmed through back-prediction of the input data. This procedure was applied to predict the presence of overpressured zones in the Anadarko Basin, Oklahoma. The results are promising and encouraging.  相似文献   

14.
Boundary effects of a laminar container in centrifuge shaking table tests   总被引:2,自引:0,他引:2  
Two dynamic centrifuge model tests were performed to simulate dry or saturated sand deposits subjected to 1 Hz base shaking. This experimental study investigated the boundary effects of a laminar container on the seismic response acquired from accelerometers and from pore pressure transducers, both of which were embedded in the sand bed at various depths and distances from the end walls. Under the tested configurations and the employed input motion used in the study, the test results revealed minimal boundary effects on the seismic responses. The measured maximum amplitude, main frequencies, phase lags of acceleration, and the profiles of the calculated RMS acceleration amplification factor were not affected by the boundaries if the instruments were positioned at a distance of more than one-twentieth of the model length from the end walls and were not positioned on the ground surface. No obvious discrepancies were observed in the time histories of excess pore water pressure, measured at a distance of one-fourth of the model length from the end walls. These results infer that variations in the seismic response at the end walls were minimal; hence the laminar container used in the study may be used effectively to simulate 1D shear wave propagation in centrifuge shaking table tests. However, for other testing configurations, a similar study should be undertaken for evaluating the boundary effect of the laminar container on the seismic responses.  相似文献   

15.
The Mononobe–Okabe (M–O) method developed in the 1920s in Japan continues to be widely used despite many criticisms and its limitations. The method was developed for gravity walls retaining cohesionless backfill materials. In design applications, however, the M–O method, or any of its derivatives, is commonly used for below ground building walls. In this regard, the M–O method is one of the most abused methods in the geotechnical practice. Recognizing the limitation of the M–O method, a simplified method was recently developed to predict lateral seismic soil pressure for building walls. The method is focused on the building walls rather than retaining walls and specifically considers the dynamic soil properties and frequency content of the design motion in its formulation.  相似文献   

16.
Various numerical methods have been used in the literature to simulate single and multiphase flow in fractured media. A promising approach is the use of the discrete-fracture model where the fracture entities in the permeable media are described explicitly in the computational grid. In this work, we present a critical review of the main conventional methods for multiphase flow in fractured media including the finite difference (FD), finite volume (FV), and finite element (FE) methods, that are coupled with the discrete-fracture model. All the conventional methods have inherent limitations in accuracy and applications. The FD method, for example, is restricted to horizontal and vertical fractures. The accuracy of the vertex-centered FV method depends on the size of the matrix gridcells next to the fractures; for an acceptable accuracy the matrix gridcells next to the fractures should be small. The FE method cannot describe properly the saturation discontinuity at the matrix–fracture interface. In this work, we introduce a new approach that is free from the limitations of the conventional methods. Our proposed approach is applicable in 2D and 3D unstructured griddings with low mesh orientation effect; it captures the saturation discontinuity from the contrast in capillary pressure between the rock matrix and fractures. The matrix–fracture and fracture–fracture fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides, in addition to the gridcell pressures, the pressures at the gridcell interfaces and can readily model the pressure discontinuities at impermeable faults in a simple way. To reduce the numerical dispersion, we use the discontinuous Galerkin (DG) method to approximate the saturation equation. We take advantage of a hybrid time scheme to alleviate the restrictions on the size of the time step in the fracture network. Several numerical examples in 2D and 3D demonstrate the robustness of the proposed model. Results show the significance of capillary pressure and orders of magnitude increase in computational speed compared to previous works.  相似文献   

17.
A New Multilevel Ground Water Monitoring System Using Multichannel Tubing   总被引:5,自引:0,他引:5  
A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system.  相似文献   

18.
The Qinling–Dabie–Sulu orogenic belt in east-central China is the largest high and ultrahigh pressure (HP and UHP) metamorphic zone in the world. The Dabie Mountains are the central segment of this orogenic belt between the North China and Yangtze cratons. This work studies the nature of the crustal structure beneath the Dabie orogenic belt to better understand the orogeny. To do that, we apply ambient noise tomography to the Dabie orogenic belt using ambient noise data from 40 stations of the China National Seismic Network (CNSN) between January 2008 and December 2009. We retrieve high signal noise ratio (SNR) Rayleigh waves by cross-correlating ambient noise data between most of the station pairs and then extract phase velocity dispersion measurements from those cross-correlations using a spectral method. Taking those dispersion measurements, we obtain high-resolution phase velocity maps at 8–35 second periods. By inverting Rayleigh wave phase velocity maps, we construct a high-resolution 3D shear velocity model of the crust in the Dabie orogenic belt.The resulting 3D model reveals interesting crustal features related to the orogeny. High shear wave velocities are imaged beneath the HP/UHP metaphoric zones at depths shallower than 9 km, suggesting that HP/UHP metaphoric rocks are primarily concentrated in the upper crust. Underlying the high velocity HP/UHP metamorphic zones, low shear velocities are observed in the middle crust, probably representing ductile shear zones and/or brittle fracture zones developed during the exhumation of the HP/UHP metamorphic rocks. Strong high velocities are present beneath the Northern Dabie complex unit in the middle crust, possibly related to cooling and crystallization of intrusive igneous rocks in the middle crust resulting from the post-collisional lithosphere delamination and subsequent magmatism. A north-dipping Moho is revealed in the eastern Dabie with the deepest Moho appearing beneath the Northern Dabie complex unit, consistent with the model of Triassic northward subduction of the Yangtze Craton beneath the North China Craton.  相似文献   

19.
We established a high-resolution calcareous nannofossil biostratigraphy for the late Pliocene–Pleistocene by analyzing a 242 m-thick, continuous sedimentary succession from Ocean Drilling Program Site 1146, Hole A, in the South China Sea (SCS). A total of 14 calcareous nannofossil datums were detected in the SCS succession. They are, in descending order: first occurrence (FO) of Emiliania huxleyi, last occurrence (LO) of Pseudoemiliania lacunosa, LO of Reticulofenestra asanoi, FO of Gephyrocapsa parallela, FO of R. asanoi, LO of large Gephyrocapsa spp., FO of large G. spp., FO of Gephyrocapsa oceanica, FO of Gephyrocapsa caribbeanica, LO of Calcidiscus macintyrei, LO of Discoaster brouweri, LO of Discoaster pentaradiatus, LO of Discoaster surculus, and LO of Discoaster tamalis. The FO of E. huxleyi was not precisely detected due to poor preservation and dissolution of nannofossils in the underlying strata. We refined the previous calcareous nannofossil biostratigraphy in the SCS by identifying Gephyrocapsa species and four evolutionary extinction events of the genus Discoaster. The proposed calcareous nannofossil biostratigraphy correlates with those reported in other terrestrial and marine areas/sites and global benthic foraminiferal δ18O records. The age–depth curves based on nannofossil biostratigraphy indicate a significant increase in the sedimentation rates at the LO of R. asanoi (0.91–0.85 Ma). The timing of this increase corresponds to reef expansion in the Ryukyu Islands linked to a stepwise increase in Kuroshio Current intensity. This timing is broadly coeval with a sea surface temperature increase of ∼2 °C in the northwestern Pacific due to expansion of the Western Pacific Warm Pool towards the north and south subtropical regions. This can be explained by increased weathering and erosion of terrestrial areas in glacial periods and increased rainfall causing higher sediment transport in interglacial periods, which were both linked to Middle Pleistocene Transition-related climatic changes.  相似文献   

20.
Transient high pore‐water pressures, up to 50 cm higher than ambient pressure, developed over the summer season at various depths in a shallow (1 m) fen peat. The excess pressures had a pattern of gradual increases and sharp drops, and their initiation and release typically corresponded to abrupt changes in atmospheric pressure. We conclude that these phenomena depend on gas bubbles (probably methane) generated by biological activity, both by clogging pores and by building up pressure as they grow. These transient and spatially discontinuous high‐pressure zones were found using pressure transducers in sealed (backfilled) pits, but not in piezometers open to the atmosphere. Piezometers may provide a conduit for the release of gas and pressure, thus rendering them unsuitable for measuring this phenomenon. Although the development of localized zones of high pressure causes erratic and unpredictable hydraulic gradients, we suggest that their effect on the flow of water or solutes is offset by the reduced permeability caused by the bubbles, which allows them to be sustained. These zones, however, probably deflect flows driven by the dominant hydraulic gradients. Furthermore, they may cause the peat volume to adjust (swell). The use and interpretation of traditional methods for estimating hydraulic head and conductivity in peat soils thus require great caution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号