首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘虎 《地质与勘探》2019,55(S1):383-393
湘中湘潭盆地大塘坡组锰矿是湖南重要的锰矿基地。盆地内发育一组NNE向同沉积断裂,形成了一系列凹陷带(断陷槽),控制了沉积岩相的分布,锰矿主要产于盆地凹陷带的黑色页岩夹碳酸锰矿微相内。矿石中Co、Zn、Pb、Mo和Ba等元素丰度较高,Co/Ni、SiO2/Al2O3、(Fe+Mn)/Ti、Al/(Fe+Mn+Al)比值以及Co/Zn-(Cu+Ni+Co)和Fe-Mn-(Cu+Ni+Co)图解都揭示锰矿成矿过程中有海底热水的参与;稀土元素分布模式、Ce、Eu异常表示锰矿形成于被动大陆边缘环境,并具有热水沉积特征;碳同位素结果显示出富集碳的轻同位素的特征,反映了湘中地区锰矿中碳同位素热水沉积的特征;氧同位素计算古温度为湘中地区锰矿的低温热水沉积成因提供了有利的佐证。  相似文献   

2.
七宝山金铜多金属矿区的钓鱼台硫铁矿床、金线头金铜矿床以及七宝山铅锌矿床,其矿化类型分别为似层状浸染型、隐爆角砾岩型、裂控热液脉型,黄铁矿是三类矿化中最发育的金属硫化物矿物。通过对3个矿床黄铁矿产状,晶体形态,主、微量元素的nS与nFe实际原子个数比图解(nS/nFe=1.985~2.066)、δFe与δS特征图解(δFe/δS=±5%)、δFe/δS-As图解、(Fe+S)-As图解、Co/Ni特征图解(Co/Ni=1.2~11;Co/Ni=2~27;0.7~18)、Co-Ni-As特征图解以及微量元素相关性[Se-Sb(0.528)、Se-Zn(0.371)、Zn-Sb(0.642)、Pb-Te(0.463)]等研究,得知3个矿床黄铁矿均受岩浆热液的影响,其成矿物质和岩浆作用密切相关,表明3类矿化黄铁矿均为与七宝山次火山杂岩体有关的中温热液型矿床。  相似文献   

3.
东天山成矿带斑岩铜矿和其他类型矿床找矿勘查   总被引:4,自引:0,他引:4  
东天山地区横跨哈萨克斯坦与塔里木两大板块,是新疆最重要的有色金属、黑色金属和贵金属矿产地之一。经历了前震旦纪基底形成→震旦-泥盆纪古亚洲洋形成、消亡→石炭纪-早二叠世后碰撞造山→晚二叠世至今的陆内造山等阶段。主要成矿期为晚古生代早期(泥盆纪-二叠纪),成矿作用复杂、类型繁多。其中,北部形成岛弧斑岩型和火山岩型铜、钼、金矿,中部形成拉张火山岩型和矽卡岩型金、铜、镍、银矿,中南部形成前寒武纪结晶基底叠加改造的层控-热液型铅、锌、银矿,南部库鲁克塔格和北山地区形成拉张铜、镍、金矿。通过研究认为,东天山地区尤以铜、镍、钼矿产资源潜力很大,优选出28个矿找矿靶区。  相似文献   

4.
吉林珲春-汪清地区已发现的有色金属、贵金属、稀有金属、放射性金属和黑色金属矿产计11种.这些矿产与下古生界五道沟群地层,中生代火山岩系,华力西-燕山期中酸性侵入岩、次火山岩,东西向、南北向构造及火山构造密切相关  相似文献   

5.
新疆准北地区铜矿床主要类型控矿条件及找矿前景分析   总被引:5,自引:0,他引:5  
准北地区铜矿床已发现有岩浆熔离铜镍硫化物型,海相火山岩型,隐爆角砾岩型和陆相火山岩型,那林卡拉-喀拉通克铜镍矿带受控于海沟岛弧盆地内基性岩带的控制,岩浆分异程度对铜矿形成具有明显的控制作用,海相火山岩铜矿受火山机构制约,常产出于海底火山喷发中心及附近洼地,将准北地区划分冲乎尔-麦兹铜多金属,阿舍勒铜锌,额尔齐斯铜(镍)金-萨吾尔-加波萨尔铜(钼)和谢米斯台-阿尔曼台-北塔山铜等五个具找矿前景的成矿  相似文献   

6.
太平洋海山钴结壳资源量估算   总被引:2,自引:0,他引:2  
为合理地估算出太平洋海山钴结壳资源量, 基于我国西太平洋海山钴结壳拖网采样调查资料以及对太平洋海山钴结壳资源分布规律和钴结壳矿区圈定参数指标的深入研究, 创造性地按海山不同高度、不同洋壳年龄赋予不同结壳厚度, 进而首次计算出太平洋海山干结壳资源量为(507.06~1 014.11)×108 t, 锰为(111.15~222.29)×108 t, 钴为(3.04~6.08)×108 t, 镍为(2.23~4.46)×108 t, 铜为(0.66~1.32)×108 t, 结壳分布面积为2 062 862 km2.通过Co通量与结壳Co沉积量、结壳厚度的相关分析表明, 赋予不同洋壳年龄段的结壳厚度是理论厚度的6.10%~12.20%, 这与Ku et al.得出"结壳生长时间只占其整个生命史4%"的认识非常相近, 说明所赋结壳厚度基本合理, 得出的结壳资源量基本正确.为整个大洋海盆内海山钴结壳资源量的估算提供了新方法.   相似文献   

7.
Petrological, geochemical, and Nd isotopic analyses have been carried out on rock samples from the Rainbow vent field to assess the evolution of the hydrothermal system. The Rainbow vent field is an ultramafic-hosted hydrothermal system located on the Mid-Atlantic Ridge characterized by vigorous high-temperature venting (∼365°C) and unique chemical composition of fluids: high chlorinity, low pH and very high Fe, and rare earth element (REE) contents (Douville et al., Chemical Geology 184:37–48, 2002). Serpentinization has occurred under a low-temperature (<270°C) retrograde regime, later overprinted by a higher temperature sulfide mineralization event. Retrograde serpentinization reactions alone cannot reproduce the reported heat and specific chemical features of Rainbow hydrothermal fluids. The following units were identified within the deposit: (1) nonmineralized serpentinite, (2) mineralized serpentinite—stockwork, (3) steatite, (4) semimassive sulfides, and (5) massive sulfides, which include Cu-rich massive sulfides (up to 28wt% Cu) and Zn-rich massive sulfide chimneys (up to 5wt% Zn). Sulfide mineralization has produced significant changes in the sulfide-bearing rocks including enrichment in transition metals (Cu, Zn, Fe, and Co) and light REE, increase in the Co/Ni ratios comparable to those of mafic Cu-rich volcanic-hosted massive sulfide deposits and different 143Nd/144Nd isotope ratios. Vent fluid chemistry data are indicative of acidic, reducing, and high temperature conditions at the subseafloor reaction zone where fluids undergo phase separation most likely under subcritical conditions (boiling). An explanation for the high chlorinity is not straightforward unless mixing with high salinity brine or direct contribution from a magmatic Cl-rich aqueous fluid is considered. This study adds new data, which, combined with the current knowledge of the Rainbow vent field, brings compelling evidence for the presence, at depth, of a magmatic body, most likely gabbroic, which provides heat and metals to the system. Co/Ni ratios proved to be good tools used to discriminate between rock units, degree of sulfide mineralization, and positioning within the hydrothermal system. Deeper units have Co/Ni <1 and subsurface and surface units have Co/Ni >1.  相似文献   

8.
Cation exchange reactions with participation of heavy metals Mn, Co, Ni, Cu, Zn, Cd, Ba, and Pb were studed in oceanic low-temperature hydrothermal deposits of various mineral compositions and in hydrogenic Fe-Mn crusts. Individual minerals and their assemblages differ significantly in absorptive capacity, which increases in the following order: hematite ? Si-protoferrihydrite < protoferrihydrite < geothite < nontronite ? Fe-vernadite + Mn-feroxyhyte < Fe-free vernadite < bernessite + Fe-free vernadite < bernessite; i.e., it successively increases from the mineral with a coordination type of lattice to minerals with a layer-type structure. The exchange complex of all minerals includes Na+, K+, Ca2+, and Mg2+, i.e., the main cations of seawater. In Mn minerals, Mn2+ is the main exchange component. The contribution of all the mentioned cations to the exchange capacity of minerals is as high as 90–98%. The highest absorptive capacity among the examined low-temperature oceanic deposits is characteristic of hydrothermal Mn minerals. Their capacity exceeds substantially that of hydrothermal oxides, hydroxides, Fe-aluminosilicates, and hydrogenic Fe-Mn minerals. The absorptive capacity of all examined Mn minerals relative to heavy metals increases in the same order: Ni < Zn < Cd < Mn < Co < Pb < Cu.  相似文献   

9.
内蒙古额尔古纳市乌尔根铅锌银矿是得尔布干成矿带上具有代表性的浅成中低温热液型铅锌银矿之一。显微镜下观察、电子探针分析结果等矿物学证据证明,该矿床存在2期成矿作用。其中早期火山热液形成的金属硫化物普遍受应力作用的改造,并广泛被晚期形成的矿物交代,典型矿物是不含乳滴状黄铜矿的闪锌矿,具有高含量Fe、Mn和低含量Cu的特征;晚期次火山(隐爆角砾岩)热液形成的金属硫化物占大多数,常交代早期形成的矿物并与其交生在一起,典型矿物是含固溶体乳滴黄铜矿的闪锌矿,并且具有中等含量Fe、Mn和高含量Cu的特征。在次火山热液期的晚阶段残余热液还形成了较为纯净的呈棕黄色-无色透明的纯净闪锌矿,具有高含量Zn,低含量Fe、Mn、Cu的特征。结合前人测定的研究区火山岩和矿石矿物定年结果以及火山岩主量元素组成数据,推测早期火山热液成矿与中基性塔木兰沟组火山岩关系密切,而晚期次火山(隐爆角砾岩)热液属于满克头鄂博组的(中)酸性岩浆热液的产物。隐爆角砾岩热液富含Cu元素且为成矿提供了主要物质来源,是研究区寻找除铅锌之外其他矿种的重要线索。  相似文献   

10.

多金属结核富含Mn、Fe、Ni、Cu等元素以及Co和REY(稀土元素和钇)等关键金属, 是重要的大洋矿产资源。为了探究西北印度洋索马里海盆结核中关键金属的富集机制及古环境记录, 本文使用X射线衍射仪(XRD)分析了一个结核的矿物成分, 并通过激光剥蚀电感耦合等离子体质谱仪(LA-ICPMS)和电子探针(EPMA)原位分析了该结核的微区元素组成。结果表明, 研究区结核内层为柱状结构, 中间为掌状, 外层又变为柱状。结核主要由水成型富铁层构成, 但外层中还存在薄的(100~200μm)成岩-混合型富锰层。富铁层MnO平均含量为25.1%, FeO为30.4%, Co为0.26%, Ni为0.24%, Cu为0.09%, ΣREY为1981×10-6。富锰层MnO平均含量为52.0%, FeO为7.40%, Co为0.09%, Ni为2.45%, Cu为0.53%, ΣREY为719×10-6。富铁层主要由含铁水羟锰矿构成, 而富锰层主要由Ⅰ型布赛尔矿构成。Ni和Cu主要赋存于Ⅰ型布赛尔矿, Co和REY则主要赋存于含铁水羟锰矿中, 并且Co存在一个“拐点”。富锰矿物(Ⅰ型布赛尔矿)相对更富集HREE, 而含铁水羟锰矿中更富集LREE。从内到外, 结核中ΣREY呈下降趋势, REY的变化主要受Ce影响。结核Mn/Fe比值与δCe不相关, 但生长速率与δCe显著负相关, 表明生长速率可能是控制Ce异常的主要因素, 仅凭Ce异常不能区分结核微区的成因及氧化还原环境。根据Co经验公式估算, 索马里海盆结核形成年龄为~1.46Ma。柱状结构的开始形成可能与早更新世晚期的古海洋环境转型有关。而掌状结构开始生长于~0.6Ma, 中更新世气候转型之后风尘增加使得结核中Si和Al增加, 并稀释了其他成矿元素。结核富锰层可能生长于末次间冰期的亚氧化底层水环境, 且具有一定对称性和渐变性, 指示了氧化还原环境的逐渐改变和恢复。

  相似文献   

11.
The ~200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U–Cu(–Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz–chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(–Ti–Cr) oxide and Fe–Cu(–Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe–Cu(–Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe–Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular–semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01–0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2–140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C) with low Co, low Ni, and moderate Co to Ni ratios (0.19–13.93) formed during and postdating the ductile deformation stage overgrowing, replacing, and surrounding type-B pyrite. The textural evolution of pyrite parallels the tectonometamorphic evolution of the shear zone demonstrating grain elongation during progressive ductile deformation and prograde metamorphism, annealing at the peak metamorphic condition, porphyroblastic growth at the retrograde path and cataclasis following porphyroblastic growth. Compositional characteristics of hydrothermal pyrite and available geological information suggest that the U–Cu(–Fe) deposit at Turamdih might be a variant of the Fe oxide (–Cu–U–rare earth elements) family of deposits.  相似文献   

12.
块状硫化物矿床的地球化学找矿标志   总被引:6,自引:0,他引:6  
近年来国外发现了许多大型块状硫化物矿床,而我国进展还不大。原因之一是我们对这类矿床的地质特征,成矿条件尤其是找矿标志研究还不够。这是一类成矿物质通过热液作用在海底沉积而成的特殊矿床,故在找矿勘探讨既要研究沉积矿时形成的原生晕,又要研究热液经过围岩时蚀变而产生的次生晕?Mn晕,Tl,Hg,Ba,As和Zn等元素的异常,络合剂元素的富集,微量元素的分布,铅同位素,岩石化学异指数尤其是块状硫化物Cu矿中  相似文献   

13.
1. The division of main tectonic regions and their minerogenetic belts. In quite a few fold zones of geosynclinal systems, such as Altay, Junggar, Tianshan, Kunlun and Beishan Mountains, there exist ore zones of rare metals, muscovite, Fe, Cr, Mn, Au, P, asbestos, nonferrous metals, etc., whereas in Tarim platform, Fe, Al, Zn, Cr, P, S, Cu and coal minerogenetic belts have already been found. 2. Minerogenetic relations between major types of ore deposits and magmatic series, sedimentary formation, or metamorphic facies. Cr, Cu, Ni, Co, Fe and rare metals of magmatic type are related to magnesian ultrabasic, ferruginous basic-ultrabasic or acid-alkaline rocks, nonferrous and noble metals, Fe and asbestos of hydrothermal type are found associated with acid, intermediate-acid intrusive rocks generally rich in alkali; rare metals and muscovite of pegmatitic type are genetically in connection with acid-alkaline rocks, Fe of volcanic type has to do with alkali-rich acid to basic eruptive rocks, coal, Fe, Mn, Al, Cu, Pb, Zn, P and S of sedimentary type occur mostly in clastic carbonate-rocks, siliceous carbonate rocks, detrital rocks, red beds, salt-bearing or coal-bearing formations, Fe, P of sedimentary-metamorphic type are preserrt: within such metamorphic facies as ferro-siliceous hornblendite, green schist-marble or siliceous-magnesian carbonatite. 3. Regularity of the formation and distribution of ore deposits. The formation and distribution of ore deposits are generally characterued by zoning, fault-controlling, polycycles, stratabinding, inheritance, regeneration, ore combination, equidistance, migration and superimposition, with individual ore deposit having its specific characteristics.  相似文献   

14.
The paper reports data on the distribution of solute (Mn, Zn, Cu, Pb, and Cd) and particulate (Fe, Mn, Zn, Cu, Pb, Ni, and Co) species of metals in hydrothermal plumes above the active TAG and Broken Spur hydrothermal fields (26° N and 29° N in the MAR rift valley, respectively). Sediment-trap data on fluxes of hydrothermal-sedimentary material in the areas indicate that (i) the predominant Zn source for the metalliferous sediments at the TAG field is material precipitating from a plume of neutral buoyancy, and (ii) the predominant source of Fe and Co is redeposited ore material coming from the area of extensive settling of sulfides.  相似文献   

15.
湖南响涛源锰矿位于湘中桃江成锰盆地。盆地内发育一组NNW向同沉积断裂,形成了一系列断陷槽,控制了沉积岩相的分布,其中黑色页岩、含锰灰岩、碳酸锰矿为成矿最佳的岩性组合。矿石的化学组分多样,Co、Ni、Pb、Mo和Ba等丰度较高,Co/Ni、SiO2/Al2O3、(Fe+Mn)/Ti、Al/(Fe+Mn+Al)、Fe/Ti比值以及Co/Zn-(Cu+Ni+Co)和Fe-Mn-(Cu+Ni+Co)图解揭示锰矿成矿过程中有海底热水的参与;稀土元素配分模式、Ce、Eu异常表示锰矿形成于被动大陆边缘环境,并具有热水沉积特征;碳同位素结果显示出富集碳的轻同位素的特征,反映了响涛源锰矿成矿过程中深部热水沉积及生物作用的特征;氧同位素计算古温度为湘中响涛源锰矿床的低温热水沉积成因提供了有利的佐证。  相似文献   

16.
A series of samples from the Hine Hina hydrothermal field (HHF) and the Mariner hydrothermal field (MHF) in the Central and Southern Valu Fa Ridge (VFR), Lau Basin were examined to explain the source origin and formation of the hydrothermal Fe-Si-Mn oxide deposits. The mineralogy was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, and energy-dispersive spectroscopy (EDS). For the Fe-Mn oxide crusts in the HHF, varying amounts of volcanic fragments and some seawater contributions were recognized, along with higher concentrations of Mn, Al, Co, Ni, Zn, Sr, Mo, elevated ∑REE and negative Ce anomalies. In contrast, the Si-rich oxide samples of the MHF were enriched in Cu, Pb and Ba, indicative of proximity to a hydrothermal jet. Moreover, conductive cooling of hydrothermal fluid evoked the Si-rich deposit formation in the MHF. The Sr, Nd and Pb isotope data provided further constraints regarding the source and formation of the Fe-Si-Mn deposits in the VFR by showing that the samples of the HHF are a mixture of three components, namely, hydrothermal fluid, seawater and volcanic materials, whereas the samples of the MHF were dominated by hydrothermal fluids. The seawater had a minor influence on the Nd isotope data, and the Pb isotope data exhibited a close association with the substrate rock and preformed volcaniclastic layers in this area. The occurrence of relatively high Mn/Fe ratios in the hydrothermal deposits of this area may be a good indicator of the propagating activities of the VFR over geological time.  相似文献   

17.
大火成岩省的成矿效应   总被引:1,自引:0,他引:1  
张招崇  侯通  程志国 《地质学报》2022,96(1):131-154
大火成岩省(LIPs)是地质历史上重大的地质事件,巨量的岩浆堆积形成了丰富的矿产资源.按照成矿作用与LIPs事件的关系,将其划分为两种类型:①成矿作用与LIPs事件直接相关,两者时间一致或者成矿作用稍晚,该类型矿床可以作为LIPs的组成部分;②成矿作用与LIPs事件在时间上有明显的间断,但与LIPs有间接的成因联系.与...  相似文献   

18.
Gersdorffite from two mineralization types (post-Variscan vein deposits, strata-bound mineralization) was investigated in the Niederberg area Rhenish Massif. In the ternary Ni–Co–Fe space gersdorffite from post-Variscan vein deposits displays a tight cluster with the highest Ni-contents ranging from 0.825 to 0.962 atoms per formula unit (a.p.f.u.). As/S ratios comprise a narrow range from 0.875 to 1.012. In contrast gersdorffite from the strata-bound mineralization displays a substitutional trend. Co and Fe substitute for Ni in a ± fixed ratio. Ni ranges between 0.494 and 0.836 a.p.f.u. As/S ratios (1.025–1.211) display a wider range and indicate higher As-contents relative to gersdorffite from post-Variscan vein deposits. Based on these results, two different hydrothermal fluid systems can be identified in the Niederberg area forming gersdorffite in both mineralization types. The hydrothermal fluids circulating in the post-Variscan vein deposits were homogeneous (high Ni-activities, lower As fugacities) and mixing occurred far away from the site of deposition whereas the fluids of the strata-bound mineralization were more heterogeneous (decreasing Ni-activities) with moderate elevated As fugacities. With respect to the post-Variscan vein deposits in the Niederberg area the results are compatible with earlier findings.Comparison with available gersdorffite analyses from adjacent areas (borehole Viersen, Ramsbeck deposit) reveal that gersdorffite compositions provide a reliable tool in distinguishing between different hydrothermal systems on a regional scale in the northern Rhenish Massif. However, gersdorffite compositions cannot be used to discriminate between Variscan and post-Variscan deposits with confidence.The country rocks in the Niederberg area are possible sources for Ni, Co and Fe during gersdorffite formation of the strata-bound mineralization. However, due to the remarkable homogeneity of gersdorffite compositions of the post-Variscan vein deposits irrespective of age and composition of the immediate adjacent host-rocks it is assumed that these host-rocks are not the source of the metals. Reduced Zechstein sulfate is assumed to be the source of sulfur. The As source remains unknown.Due to conflicting experimental data concerning the gersdorffite solid solution field it is not possible to derive reliable formation temperatures for the strata-bound mineralization. However, gersdorffite compositions of the post-Variscan vein deposits are compatible with low formation temperatures (<300 °C) in accordance with earlier findings.  相似文献   

19.
Manganese oxides from deposits in west-central Arkansas were analyzed by X-ray diffraction for mineralogy and by atomic absorption spectroscopy for Mn, Fe, Co, Cu, Ni, Zn, V, Al, Li, Na, K, Mg, Ca, Sr and Ba. We report on 42 samples from 25 sites with more than 25 wt.% Mn and less than 7 wt.% Fe. Most samples were mixtures of two or more of the following minerals, many with concentric deposition: cryptomelane, lithiophorite, psilomelane and pyrolusite. In the purer samples of single minerals, lithiophorite contained the higher concentrations of total base metals (Co + Cu + Ni + Zn) than other minerals. In atom % of Mn these concentrations were: 9.51% in lithiophorite; 0.432% in psilomelane; and 0.275% in cryptomelane. The relative concentration of base metals in the pure minerals, proceeding from highest to lowest concentration, were: lithiophorite (Co = Cu > Ni > Zn); psilomelane (Co > Cu > Zn > Ni) and cryptomelane (Zn > Co = Cu > Ni).The concentration of Li correlates with the metals Al, Co, Cu, Ni and Zn, in the mineral samples containing measurable Li. Correlation coefficients (?) for Li with the various metals and sum of the base metals were: Al (? = 0.976); Co (? = 0.44); Ni (? = 0.954); Cu (? = 0.918); Zn (? = 0.875); and (Co + Cu + Ni + Zn) (? = 0.979). Li is believed to be a measure of lithiophorite. Correlation was found between Al content and base metal contents for all samples: Co (? = 0.354); Ni (? = 0.749); Cu (? = 0.808); Zn (? = 0.632); and (Co + Cu + Ni + Zn) (? = 0.884). The Al correlation extended to published values for these and the minerals hollandite and todorokite, except for Zn. Zn correlated with K in published analyses and in the eastern half of the study area where cryptomelane predominated.A mechanism is proposed to explain the enhancement by Al of base metal incorporation into manganese oxide minerals. The mechanism involves the isomorphous substitution of Al3+ for Mn4+ with charge neutralization by bivalent base metal ions.  相似文献   

20.
The Black Butte copper deposits (formerly known as Sheep Creek) are a group of sediment hosted, laterally extensive Cu–(Co–Ag) deposits hosted in dolomitic shale of the mid-Proterozoic Newland Formation. Copper–cobalt mineralization occurs in zones of massive, laminated pyrite that were locally reworked and infiltrated by Cu-rich fluids during early diagenesis. Cobalt, along with substantial nickel and arsenic, mainly occurs as impurities within early, porous pyrite, or as minute grains of sulpharsenides (i.e., cobaltite, glaucodot, and/or alloclasite). Later thermal events remobilized the Co, Ni, and As to form intergrowths of siegenite (Co,Ni)3S4 and tennantite. The temperature of this later event is constrained by the mineralogical assemblage to have been relatively low, between 125 and 225 °C. Although many of the characteristics of SEDEX-type deposits are present at Black Butte (e.g., laterally extensive massive pyrite horizons, interbedded black shales, abundant barite and local phosphate horizons, and rifted continental margin setting), the lack of economic Pb and Zn mineralization in the main deposits, and the abundance of Cu with high Co, is more typical of sediment-hosted stratiform copper deposits. The Neihart Formation, a hematitic quartz sandstone resting below the base of the Belt Supergroup, may have been an important source bed for Cu–Co–Ni–Ag fluids. It is speculated that these fluids, ideal for forming Cu deposits, were expelled along growth faults near the margin of the Belt Basin and deposited metals on or just below the sea floor in a setting that is typical of SEDEX deposits. This unique mineral deposit model may have applications to other districts where Cu–Co-rich sulfides are deposited in an exhalative setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号