首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper Devonian and Lower Carboniferous Sequence Stratigraphy of South China   总被引:9,自引:0,他引:9  
SequencestratigraphyhashopaidmoreattentionforitSrelativelycompletetheoreticalsyStemandgreatsuchesinpracticesinceitwasadvancedinthe197ds.Integratingonthedataofbiostratiglaphy,lithostratigraphy,seismicstfstigraphy,geochendstryandsedirnentology,sequencestratigraphyattemptStoestablishachronostratigraphicframeworkandcormectsdepositionalsequencewithglobalsealevelchange,andhencemakeSitpossibletOpreciselycorrelatethestrataindifferentfactesareasoveraconsiderabledistance,evenovertheworld.TheUpperDevon…  相似文献   

2.
We present new data on the material composition of terrigenous deposits in the pre-Jurassic basement of the West Siberian Plate, which formed on the margin of the Kazakhstan paleocontinent. Studies of the sections of several wells drilled in the east of the Kurgan Region showed that the Middle–Upper Devonian and lower Lower Carboniferous continental and littoral deposits are graywackes rich in rock and plagioclase clastics. Quartz grains amount to no more than 3–5%. The rock clastics are mainly volcanics of basic and normal compositions, which were supplied, most likely, from acting volcanoes of the marginal belt. By genesis, these are predominantly tephroids. Along with allothigenic components of sandstones, we consider authigenic minerals, which permit treating the postsedimentational transformation of the Middle Devonian and Early Carboniferous rocks as early catagenesis. By the vitrinite reflectance, the Lower Visean sandstones correspond to gradations MC2 and MC3 (medium catagenesis).  相似文献   

3.
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ~(34)S_(CDT) values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(~(206)Pb/~(204)Pb = 17.59225-18.56354, average 18.32020; ~(207)Pb/~(204)Pb =15.51770-15.69381, average 15.66217; ~(208)Pb/~(204)Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(~(206)Pb/~(204)Pb= 18.10678-18.26293, average 18.21158; ~(207)Pb/~(204)Pb =15.63196-15.68188, average 15.65345; ~(208)Pb/~(204)Pb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.  相似文献   

4.
The U–Pb age of the boundary between the Lower and Middle Carboniferous has been determined on zircons separated from a volcanic tuff layer within a limestone unit near the roof of the Serpukhovian Stage in an occurrence at the right bank of the Iset’ River. The zircons have been dated using SIMS SHRIMP-II at 320 ± 3 Ma. The result agrees well with the accepted age of the boundary between the Serpukhovian and Bashkirian ages (323.2 ± 0.4 Ma, [1]).  相似文献   

5.
Abundant and well-preserved fossil radiolarians found from the Artencasher Formation, Heiyingshan of Baicheng County, Xinjiang Uygur Autonomous Region, are identified, including 15 species and 2 unnamed species in 9 genera. The fauna is dominated by the Family Entactiniidae of Spumellaria. According to the faunal characteristics, the radiolarians may be divided into five assemblages, namely, the Triaenosphaera sicarius, Entatinosphaera palimbola, Entactinia vulgaris, Belowea cf. variabilis and Archocyrtium sp assemblages. The fauna may be correlated with that from the Early Carboniferous of Frankenwald and Rein in Germany. Thus, ophiolite was formed in the Carboniferous, while the age of collision between the Ili plate and the Tarim plate is Early Carboniferous.  相似文献   

6.
7.
A series of new Sensitive High-Resolution Ion MicroProbe (SHRIMP) U – Pb ages is presented for Palaeozoic (mainly Devonian and Carboniferous) granites from Tasmania. In virtually all instances the new ages are significantly older than previously determined Rb – Sr and K – Ar ages, even though the level of emplacement had been thought to be too shallow to allow loss of radiogenic daughter products. In two extreme cases, granite bodies at South West Cape and Elliott Bay that had previously yielded Carboniferous Rb – Sr and Early Devonian K – Ar ages, respectively, are now both shown to be Late Cambrian. In northeast Tasmania, granitic activity in the Blue Tier Batholith lasted for about 22 million years, with I-type magmas being followed by S-types only toward the end of that time. The exclusively I-type granites of the Scottsdale Batholith formed about 10 million years after the initiation of igneous activity in the Blue Tier Batholith, and were emplaced over a comparatively short time interval (4 – 5 million years). The new data confirm a previously held view, based on Rb – Sr analysis, that the economically important Lottah Granite crystallised roughly 9 million years later than the nearby Poimena Granite and, therefore, could not have been derived by magmatic fractionation of the latter. A regional deformation equated with the Tabberabberan Orogeny has been dated at about 390 Ma in northeastern Tasmania, based on the presence or absence of a northwest-trending foliation in the different granite bodies. The oldest granites occur in the northeast of Tasmania, with an irregular progression of ages to the west coast. A trend of this type could have arisen in an arc-free or arc-related environment. If the latter applies, either flat subduction or processes associated with the amalgamation of eastern and western basement terranes might be the controlling mechanism. Eastern Tasmania experienced a trend from mafic I-type to progressively more felsic, largely S-type igneous activity, but the trend for western Tasmania is not as obvious. The trend for eastern Tasmania is an exception to the general rule for the Lachlan Orogen, possibly signifying that the mid-crust was relatively cool when the first I-type granites were generated. Crustal thickening during the Tabberabberan Orogeny may have been a prerequisite for the generation of later, more felsic, S- and I-types.  相似文献   

8.
Tourmalines from the Kalinovka porphyry copper deposit with epithermal bismuth-gold-basemetal mineralization and the Michurino gold-silver-base-metal prospect have been studied in the South Urals. Tourmaline from the Kalinovka deposit occurs as pockets and veinlets in quartz-sericite metasomatic rock and propylite. The early schorl-“oxy-schorl” [Fetot/(Fetot + Mg) = 0.66?0.81] enriched in Fe3+ is characterized by the homovalent isomorphic substitution of Fe3+ for Al typical of propylites at porphyry copper deposits. The overgrowing tourmalines of the second and third generations from propylite and quartz-sericite metasomatic rock are intermediate members of the dravite-magnesio-foitite solid solution series [Fetot/(Fetot + Mg) = 0.05?0.46] with homovalent substitution of Mg for Fe2+ and coupled substitution of X ? + YAl for XNa + YMg. These substitutions differ from the coupled substitution of YAl + WO2? for YFe2+ + WOH? in tourmaline from quartz-sericite rocks at porphyry copper deposits. At the Michurino prospect, the tourmaline hosted in the chlorite-pyrite-quartz veins and veinlets with Ag-Au-Cu-Pb-Zn mineralization is an intermediate member of the dravite-magnesio-foitite solid solution series [Fetot/(Fetot + Mg) = 0.20?0.31] with homovalent substitution of Mg for Fe2+ and coupled substitutions of X ? + YAl for XNa + YMg identical to that of late tourmaline at the Kalinovka deposit. Thus, tourmalines of the porphyry and epithermal stages are different in isomorphic substitutions, which allow us to consider tourmaline as an indicator of super- or juxtaposed mineralization.  相似文献   

9.
A symplectite of pyrite and magnetite in the massive sulphide ore of the Mashan mine,Anhui Province,is interpreted to have been formed by their replacing earlier pyrrhotite.The compositions of pyrrhotite,pyrite and magnetite related to this texture are given by electron microprobe analysis.Such a texture is likely to be formed when the ore-forming system reaches the three-phase point of pyrrhotite,pyrite and magnetite from the pyrrhotite stability field.The very small probability for the system to reach this point could be used to account for the rare occurrence of such symplectite in natural ores.  相似文献   

10.
Zircons from two igneous and two sedimentary units in the Bombala area of southeastern New South Wales have been examined by the sensitive high resolution ion microprobe (SHRIMP) to establish a timeframe in which to interpret these rocks. Previous studies have correlated these rocks with Late Devonian units of the south coast, solely upon the basis of stratigraphy and lithology as palaeontological evidence was absent. The two igneous units are the Hospital Porphyry and Paradise Porphyry occurring beneath the sedimentary units. Both give a Frasnian age that can be correlated with the Boyd Volcanic Complex. The sedimentary samples are from the basal and upper sections of the Rosemeath Formation, a fluvial ‘redbed’ consisting of conglomerate, coarse sandstone, and associated red siltstone and mudstone. Detrital zircons from the basal conglomeratic section at Kilbrechin indicate a dominant provenance from local Silurian granites and volcanics and a maximum depositional age that can be correlated with the Frasnian‐Famennian Merrimbula Group. However, detrital zircons from the upper coarse sandstone section of the Rosemeath Formation at Endeavour Lookout challenge the positive correlation trend with a lack of Silurian‐age grains and a presence of grains ranging from Late Devonian to Early Carboniferous in age. These results imply either that the south coast correlation is not valid for the upper sequences, or that the Merrimbula Group sequences also extend upward into the Carboniferous. The general coarseness of the Rosemeath Formation also suggests a relatively local provenance. No Early Carboniferous source is known in the immediate vicinity suggesting that Early Carboniferous igneous activity in this region of the Lachlan Orogen may have been more extensive than is currently realised.  相似文献   

11.
The Tongbai granulites are present mainly as xenoliths in granodioritic gneisses. The xenoliths with a zircon age of 470Ma are older than the host rocks of granodioritic gneisses which yield a zircon age of 435Ma. It is suggested that the granulites were transported from the lower crust to the upper level along with granodioritic magma. Geothermometrical and geobarometrical studies based on the coexisting minerals (Opx-Cpx and Opx-Gar) show that the granulites were crystallized at 818 –840 °C and 9.5−9.8 × 108 Pa corresponding to the lower crust. Tectonically, the Shangdan suture zone constitutes the boundary between the North China and Yangtze plates. The zone is char acterized by the occurrence of ophiolites in the western part and by that of granulites in the eastern part. So the western part marks the upper crustal level of the Qinling belt, while the eastern part represents the exposure of a deeper level. The results of isotopic dating and the geochemical characteristics of the xenoliths are consistent with those of metatholeiites of the ophiolites in the western part. Therefore, it is assumed that both ophiolites found in the west and granulites found in the east all represent the remnants of the ancient Qinling ocean plate. The difference is that the ophiolites are pieces of obducted fragments from the ocean floor during the subduction in the Early Palaeozoic. However, in the Tongbai area, when the ocean floor was subducting towards the lower crust, it underwent a granulite fades metamorphism. Subsequently, granodioritic magma formed by partial melting trapped some fragments of granulite upwards. This project was jointly granted by the National Natural Science Foundation of China and Stiftung Volkswagenwerk of Germany  相似文献   

12.
The Late Devonian–early Carboniferous deposits of the Anarak section in northeastern Isfahan, Central Iran, evaluated based on conodont biostratigraphy, sedimentary environment and sequence stratigraphy. According to the field observations, five lithological units were identified. Investigating the conodont fauna of the Late Devonian–Carboniferous(Mississippian–Pennsylvanian) deposits of Bahram, Shishtu, and Qaleh(Sardar 1) formations in Anarak section led to the identification of 67 species of ...  相似文献   

13.
The ore-formational, ore-facies, lithological, and mineralogical-geochemical criteria are defined for the detection of hydrothermal ecosystem fauna in ores of the volcanic-hosted massive sulfide deposits in the Urals. Abundant mineralized microfauna is found mainly in massive sulfide mounds formed in the jasperous basalt (Buribai, Priorsk, Yubileinoe, Sultanov), rhyolite—basalt (Yaman-Kasy, Blyava, Komosomol’sk, Sibai, Molodezhnoe, Valentorsk), and the less common serpentinite (Dergamysh) formations of the Urals (O—D2). In the ore-formational series of the massive sulfide deposits, probability of the detection of mineralized fauna correlates inversely with the relative abundance of felsic volcanic rocks underlying the ores. This series is also marked by a gradual disappearance of colloform pyrite, marcasite, isocubanite, pyrrhotite, and pyrite pseudomorphoses after pyrrhotite; increase of the amount of bornite, fahlores, and barite; decrease of contents of Se, Te, Co, and Sn in chalcopyrite and sphalerite; and inсrease of Tl, As, Sb, and Pb in the colloform pyrite. Probability of the detection of mineralized fauna in the morphogenetic series of massive sulfide deposits decreases from the weakly degraded sulfide mounds to the clastic stratiform deposits. The degradation degree of sulfide mounds and fauna preservation correlates with the attenuation of volcanic intensity, which is reflected in the abundance of sedimentary and volcanosedimentary rocks and the depletion of effusive rocks in the geological sections.  相似文献   

14.
Lindera is a large genus of graceful, pleasantly scented and common native trees and shrubs of southern China and neighboring regions of SE Asia. There is a well-documented Cenozoic fossil record not only in these regions but also from elsewhere. A new fossil leaf record has been found in diatomite beds from the Upper Pliocene Mangbang Formation of Tuantian, Tengchong County, Yunnan. The leaves are identified and assigned to Lindera acuminatissima K. Q. Dao et B. N. Sun sp. nov., by comparing their leaf architecture and epidermal characteristics with those of 51 extant Lauraceae species and with 15 known fossil Lindera taxa. The specimens have well-preserved cuticles, with typical leaf architecture and epidermal characteristics of the Lauraceae, including entire leaf margin, intramarginal veins, basal ternate acrodromous primary veins, one-cell trichome base, paracytic stomatal apparatus, sunken guard cells, subsidiary hardly staining cells and presence of oil cells. These characteristics are consistent with Lindera sect. Daphnidium but are different from reported fossil and extant species of Lindera. The cuticles of Lindera are fragile and delicate with only three Lindera fossils reported based on this tissue. In terms of paleobiogeography, the fossil record indicates that Lindera is distributed in high- to mid-latitude regions of the Late Cretaceous to Paleocene northern hemisphere. Coincidentally, the records of Lindera located on both sides of the Bering Land Bridge possibly support the hypothesis that ancient plants extended via transcontinental exchanges through the Bering Corridor. In the Eocene, ancient Lindera spread to Europe through the Northern Degeer Route and the Southern Thulian Route. At the same time, ancient Lindera spread into Central Asia. Climatic changes and tectonization since the Neogene prevented the propagation of Lindera throughout Asia, North America and Europe, and hence the distribution areas have just regressed to the low-latitude regions in Asia and North America. From the Paleogene to the Neogene, Lindera has changed its distribution by surviving extreme climate changes. Quaternary glaciations ultimately led to Lindera becoming extinct in Europe. The new record from Tengchong, Yunnan, with its lower latitude located in tropical and subtropical regions, indicates that Lindera has lived in those regions since the late Pliocene.  相似文献   

15.
World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of?~?130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of?~?+1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites were formed at temperatures of?~?250 °C indicating a relatively heavy fluid in equilibrium with siderite of 13 ‰ δ18OSMOW, which is in the range of diagenetic/metamorphic fluids and reflects the?±?complete equilibration with the host rocks. Carbon isotope evidence shows that the fluid forming the siderites underwent a much higher interaction with the host rocks resulting in a lowering of the δ13C numbers (?3,3 to ?3,7 ‰). The light carbon was most probably derived from decaying hydrocarbons in the Riphean sediments. In a very early stage after sedimentation of the Satka Formation (~1,550 Ma) magnesite was formed by seepage reflux of evaporitic bittern brines at the stage of riftogenic activity in the region (1,380–1,350 Ma). Sedimentation of the Bakal Formation (~1,430 Ma) and intrusion of diabase dykes (1,386?±?1,4 Ma) followed. Diagenetic/epigenetic mobilization of these buried fluids at?~?1,100 Ma resulted in the formation of hydrothermal siderite bodies.  相似文献   

16.
17.
Upper Triassic to Upper Jurassic strata in the western and northern Sichuan Basin were deposited in a synorogenic foreland basin. Ion–microprobe U–Pb analysis of 364 detrital zircon grains from five Late Triassic to Late Jurassic sandstone samples in the northern Sichuan Basin and several published Middle Triassic to Middle Jurassic samples in the eastern Songpan–Ganzi Complex and western and inner Sichuan Basin provide an initial framework for understanding the Late Triassic to Late Jurassic provenance of western and northern Sichuan Basin. For further understanding, the paleogeographic setting of these areas and neighboring hinterlands was constructed. Combined with analysis of depocenter migration, thermochronology and detrital zircon provenance, the western and northern Sichuan Basin is displayed as a transferred foreland basin from Late Triassic to Late Jurassic. The Upper Triassic Xujiahe depocenter was located at the front of the Longmen Shan belt, and sediments in the western Sichuan Basin shared the same provenances with the Middle–Upper Triassic in the Songpan–Ganzi Complex, whereas the South Qinling fed the northern Sichuan Basin. The synorogenic depocenter transferred to the front of Micang Shan during the early Middle Jurassic and at the front of the Daba Shan during the middle–late Middle Jurassic. Zircons of the Middle Jurassic were sourced from the North Qinling, South Qinling and northern Yangtze Craton. The depocenter returned to the front of the Micang Shan again during the Late Jurassic, and the South Qinling and northern Yangtze Craton was the main provenance. The detrital zircon U–Pb ages imply that the South and North China collision was probably not finished at the Late Jurassic.  相似文献   

18.
HAO  NANA  YUAN  WANMING  ZHANG  AIKUI  FENG  YUNLEI  CAO  JIANHUI  CHEN  XIAONING  CHENG  XUEQIN  MO  XUANXUE 《Journal of Earth System Science》2015,124(1):171-196
Journal of Earth System Science - The East Kunlun Orogenic Belt has undergone a composite orogenic process consisting of multiple orogenic cycles and involving many types of magmatic rocks spread...  相似文献   

19.
The Balkan Peninsula represents one of the most important human pathways into and out of Europe during the Pleistocene. Mishin Kamik cave, located in the karst region of Western Stara Planina, has a rich faunal content and shows promising features indicating a human occupation site with the discovery of potential bone artefacts and an intriguing accumulation of bear skulls and bones. Petrographic study and U-series dating of a stalagmite and other calcite deposits in the cave provide an absolute chronological frame for the detrital infillings and their archaeological content and inform the environmental and climatic context of the cave evolution. Most detrital deposits in the cave were probably deposited before Marine Isotope Stage (MIS) 5 and the cave morphology and sedimentary deposits display current morphologies since ~135 ka. Consequently, the palaeontological and archaeological findings are older than ~135 ka. Calcite dated on and under the accumulation of bear skulls and bones suggests deposition during MIS 7. A first depositional contextualization of the bone accumulation does not allow us to discriminate between a natural or anthropogenic origin. The study emphasizes the added value of speleothem studies in archaeological sites and particularly in bringing a well-constrained chronological and environmental framework.  相似文献   

20.
The paper presents gaz chromatography–mass spectrometry and 1H- and 13C-NMR data on the composition of hydrocarbon markers and structural-group composition of oils in the Timan–Pechora oil and gas province. The set of samples is subdivided into groups whose oils differ in composition and the distribution of their polycyclic biomarkers. All of the oils show closely similar geochemical characteristics, types of their source organic matter, and thermal maturity. Comparison of oil characteristics (composition of the polycyclic biomarkers) and parameters determined by chromatography–mass spectrometry makes it possible to reveal certain important (and calling for further investigation) relations between the composition of the structural groups of hydrocarbons in the oil fluid and its geochemical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号