首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Duolong gold-rich porphyry copper deposit was recently discovered and represents a giant prospect (inferred resources of 4–5 Mt fine-Cu with a grade of 0.72% Cu; 30–50 t fine-gold with a grade of 0.23 g/t Au) in the Bangongco metallogenic belt, Tibet. Zircon SHRIMP and LA-ICP-MS U–Pb geochronology shows that the multiple porphyritic intrusions were emplaced during two episodes, the first at about 121 Ma (Bolong mineralized granodiorite porphyry (BMGP) and barren granodiorite porphyry (BGP)) and the second about 116 Ma (Duobuza mineralized granodiorite porphyry (DMGP)). Moreover, the basaltic andesites also have two episodes at about 118 Ma and 106 Ma, respectively. One andesite yields an U–Pb zircon age of 111.9 ± 1.9 Ma, indicating it formed after the multiple granodiorite porphyries. By contrast, the 40Ar/39Ar age of 115.2 ± 1.1 Ma (hydrothermal K-feldspar vein hosted in DMGP) reveals the close temporal relationship of ore-bearing potassic alteration to the emplacement of the DMGP. The sericite from quartz-sericite vein (hosted in DMGP) yields a 40Ar/39Ar age of 115.2 ± 1.2 Ma. Therefore, the ore-forming magmatic-hydrothermal evolution probably persisted for 6 m.y. Additionally, the zircon U–Pb ages (106–121 Ma) of the volcanic rocks and the porphyries suggest that the Neo-Tethys Ocean was still subducting northward during the Early Cretaceous.  相似文献   

2.
The Duolong district is located in the south Qiangtang terrane of Tibet and is the most significant ore cluster within the Bangongco-Nujiang metallogenic belt. Duolong contains one giant, three large and two medium to small-sized porphyry (±epithermal ± breccia) copper deposits and several other mineralized porphyry bodies. All deposits are closely associated with early Cretaceous (123–115 Ma) intermediate-felsic intrusions. Naruo is a poorly studied porphyry-breccia copper deposit in the north of the Duolong district. Hydrothermal alteration surrounding the ore-bearing granodiorite at Naruo is characterized by an inner potassic zone and an outer propylitic zone, overlapped locally by minor phyllic and argillic alteration assemblages. A detailed paragenetic study has identified five distinct hydrothermal veins (M, A, B, C, D) within the porphyry system. Hydrothermal B veins are strongly related to copper mineralization. Strong propylitic alteration is also observed throughout the hydrothermal breccias identified at Naruo. Sandstone breccia, diorite-bearing breccia and granodiorite-bearing breccia were identified according to the distribution and composition of clasts. U-Pb zircon dating has determined the ages of the ore-bearing granodiorite (121.6 ± 1.3 Ma) and a barren intrusion (115.5 ± 1.1 Ma) within the porphyry system, diorite clasts (122.3 ± 0.9 Ma) and later diorite matrix (120.5 ± 1.0 Ma) in the hydrothermal breccia system, suggesting that with the exception of the late barren intrusion, they all belong to the same mineralizing event at Duolong. The geological and geochemical evidence presented in this study suggest that the porphyry and breccia systems may have originated from the same magma source, but are now spatially independent.  相似文献   

3.
It is generally believed that andesite–dacite–rhyolite suites and contemporary porphyry Cu deposits are related to subduction in active continental margin settings. However, it is still unclear which tectonic events result in the generation of porphyry Cu deposits and whether asthenospheric mantle material is involved in this process. Widespread andesitic–dacitic felsic intrusions associated with porphyry Cu deposits and rarer basalts have been identified in the Late Triassic southern Yidun arc (SYA) of eastern Tibet. However, few geochronological and geochemical data are available for these basalts, thereby hampering the development of geodynamic models for this magmatic event and the formation of related porphyry Cu deposits in the region. Here we present the first geochemical and SIMS (secondary ion mass spectrometry) zircon U–Pb data of Xiaxiaoliu basalts in the SYA. The age of the Late Triassic Xiaxiaoliu basalts (216.1 ± 2.8 Ma) is consistent with the timing of emplacement of voluminous porphyritic intrusions and the formation of Cu deposits within the SYA (peaking at 215–217 Ma). The Xiaxiaoliu basalts have E-MORB-like trace element patterns that are free of negative Nb–Ta anomalies, and have high 143Nd/144Nd(t) values, suggesting they were sourced from asthenospheric mantle without any arc-type influence. These observations, combined with the fact that some Late Triassic mineralized porphyritic intrusions within the SYA have adakitic affinities, suggest that the basalts and other igneous rocks and associated porphyry Cu deposits within the SYA were produced by tearing of a westward-dipping slab, triggering the upwelling of asthenospheric mantle material during subduction of the Garze–Litang Ocean crust.  相似文献   

4.
The Jiadanggen porphyry Cu–(Mo) deposit is newly discovered and located in the Eastern Kunlun metallogenic belt of Qinghai Province, China. Here, we present a detailed study of the petrogenesis, magma source, and tectonic setting of the mineralization causative granodiorite porphyry. The new data indicate that the granodiorite porphyry is characterized by high SiO2 (68.21–70.41 wt.%) and Al2O3, relatively high K2O, low Na2O, and low MgO and CaO concentrations, and is high-K calc-alkaline and peraluminous. The granodiorite porphyry has low Mg# (38–46) values that are indicative of no interaction between the magmas and the mantle. The samples that we have examined have low Nb/Ta (9.17–10.3) and Rb/Sr (0.28–0.39) ratios, which are indicative of crustal-derived magmas. Source region discrimination diagrams indicate that the magmas that formed the granodiorite porphyry were derived from melting of a mixed amphibolite source in the lower crust. The samples have ISr values of 0.70954–0.70979, εNd(t) values of − 8.3 to − 7.9, and t2DM ages ranging from 1644 to 1677 Ma. These indicate that the magmas that formed this intrusion were generated by melting of Mesoproterozoic lower crustal material. Higher K(Rb) contents of the samples indicate that the magma source is high potassium basaltic material in the lower crust, which could be derived from an enriched mantle source. LA-ICP-MS zircon U–Pb dating of the granodiorite porphyry yields a late Indosinian age (concordia age of 227 ± 1 Ma; MSWD = 0.31), which is close to the molybdenite Re–Os isochron age (227.2 ± 1.9 Ma), indicating further the close relationship between the granodiorite porphyry and the Cu–(Mo) mineralization. These samples are LREE and LILE (e.g., Rb, K, Ba, and Sr) enriched, and HFSE (e.g., Nb, Ta, P, and Ti) depleted, especially in P and Ti, similar to the characteristics of volcanic arc magmas. This intrusion most likely formed during the later stage of Indosinian deep subduction of oceanic slab. This was associated with underplating of mantle-derived magmas, which provided heat for crustal melting. Similar to the Jiadanggen granodiorite porphyry, Indosinian hypabyssal intermediate-felsic intrusive rocks, formed under subduction tectonism or a transitional regime from subduction to syn-collision, make up the most important targets for porphyry Cu(Mo) deposits in the Eastern Kunlun metallogenic belt.  相似文献   

5.
The Matou Mo(-Cu) deposit, located in the Yangtze Valley Metallogenic Belt of central-eastern China, is a typical porphyry-type Mo deposit. The orebodies at the deposit are hosted by Matou porphyritic granodiorite, which is the largest intrusive in the area. Quartz vein-type and disseminated sulfide mineralization are well developed in the porphyry and near its contact with Silurian sandstone. Crosscutting relationships indicate that porphyritic granodiorite is the oldest phase in the pluton, which is crosscut by a porphyritic diorite containing traces of chalcopyrite, and later dolerite dykes. These phases have U-Pb zircon dates of 147 ± 3, 140 ± 1 and 135 ± 1 Ma, which confirms the cross-cutting relationships observed in the field. A Re-Os molybdenite isochron age of 147 ± 4 Ma indicates that the porphyritic granodiorite is the source of the oldest Mo mineralization in the metallogenic belt and was formed during a change of the tectonic setting in the area, from an intracontinental orogeny to extensional tectonics. From 147 to 135 Ma, crust-mantle interaction played an important role in the formation of magmatic rocks at Matou. Systematic petrological and geochemistry investigations reveal that the three phases have a crust source with minor input from the mantle. Investigation of ore-forming fluid, H-O isotopes, S isotopes, and the Re content of molybdenite indicate that the ore-forming fluid and metals were derived from the lower crust. During the evolution of fluid from initial magmatic fluids (stage I) to ore-forming fluids (stage II), fluid boiling accompanied by the input of relatively cooler meteoric water led to the deposition of the Mo mineralization.  相似文献   

6.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

7.
The Jidetun deposit is a large porphyry Mo deposit that is located in central Jilin Province, northeast China. The Mo mineralization occurs mainly at the edge of porphyritic granodiorite, as well as the adjacent monzogranite. Field investigations, cross-cutting relationships, and mineral paragenetic associations indicate four stages of hydrothermal activity. To determine the relationships between mineralization and associated magmatism, and better understand the metallogenic processes in ore district, we have undertaken a series of studies incluiding molybdenite Re–Os and zircon U–Pb geochronology, fluid inclusions microthermometry, and C–H–O–S–Pb isotope compositions. The molybdenite Re–Os dating yielded a well-defined isochron age of 168.9 ± 1.9 Ma (MSWD = 0.34) that is similar to the weighted mean 206Pb/238U age of 173.5 ± 1.5 Ma (MSWD = 1.8) obtained from zircons from the porphyritic granodiorite. The results lead to the conclusion that Mo mineralization, occurred in the Middle Jurassic (168.9 ± 1.9 Ma), was spatially, temporally, and genetically related to the porphyritic granodiorite (173.5 ± 1.5 Ma) rather than the older monzogranite (180.1 ± 0.6 Ma). Fluid inclusion and stable (C–H–O) isotope data indicate that the initial H2O–NaCl fluids of mineralization stage I were of high-temperature and high-salinity affinity and exsolved from the granodiorite magma as a result of cooling and fractional crystallization. The fluids then evolved during mineralization stage II into immiscible H2O–CO2–NaCl fluids that facilitated the transport of metals (Mo, Cu, and Fe) and their separation from the ore-bearing magmas due to the influx of abundant external CO2 and heated meteoric water. Subsequently, during mineralization stage III and IV, increase of pH in residual ore-forming fluids on account of CO2 escape, and continuous decrease of ore-forming temperatures caused by the large accession of the meteoric water into the fluid system, reduced solubility and stability of metal clathrates, thus facilitating the deposition of polymetallic sulfides.  相似文献   

8.
The Naruo porphyry Cu deposit is the third largest deposit discovered in the Duolong metallogenic district. Previous research has focused mainly on the geochemistry of the ore-bearing granodiorite porphyry; the metallogenesis remains poorly understood. In the present work, on the basis of outcrops and drilling core geological mapping, phases of early mineralization diorite, two inter-mineralization granodiorite porphyries, and late-mineralization granodiorite porphyry have been distinguished. Furthermore, the alteration zones were outlined, and the vein sequence was identified. The diorite and three porphyry phases were subjected to Laser Ablation Inductively Coupled Plasma Mass Spectrometry (La–ICP–MS) zircon U–Pb dating and in situ Hf isotope analyses as well as bulk major element, trace element, and Sr–Nd isotopic analyses. Molybdenite Re–Os dating was also conducted.The zircon U–Pb dating results show that the diorite and porphyry intrusions were emplaced at about 120 Ma, and the molybdenite Re–Os isochron age is 118.8 ± 1.9 Ma; this indicates that the Naruo porphyry Cu deposit was formed during a continuous magmatic–hydrothermal process. All of the diorite and granodiorite porphyry samples showed arc magmatic characteristics. Moreover, the moderate (87Sr/86Sr)i ratios and low εNd(t) and εHf(t) values of the diorite and porphyry intrusions suggest the source region of the juvenile lower crust. The lower (87Sr/86Sr)i and (143Nd/144Nd)i ratios and higher εNd(t) values and incompatible element concentrations than those in the granodiorite porphyry samples indicate a two-stage magmatic generation process for the intrusions. The early mineralization diorite has a high Cu concentration, implying that the source is enriched in Cu. However, the slightly lower Cu content of the late-mineralization granodiorite porphyry samples might imply Cu release from magmas and deposition within the metallogenic stage. The multiple stages of intrusions and subsequent volcanism within the Duolong metallogenic district, together with high Sr/Y features, indicate persistent magmatism during the metallogenic epoch, which is necessary for maintaining the activity of magmatic–hydrothermal and mineralization processes. Thus, the high Cu content in the source region, mantle-derived melt upwelling, and multiple stages of persistent magmatism were favorable for the formation of the Naruo porphyry Cu deposit.The high Fe2O3/FeO ratios of the diorite and granodiorite porphyry intrusions show very high oxidation features, which is coincident with estimated magmatic oxidation state calculated by the zircon trace element compositions. The high oxidation facilitates sulfur and chalcophile metals to be scavenged into the magmatic–hydrothermal systems, which is crucial for the metallogenesis of the Naruo porphyry Cu deposit.  相似文献   

9.
Copper, gold and molybdenum mineralization of the Kalmakyr porphyry deposit in Uzbek Tien Shan occurs as stockworks, veinlets and disseminations in the phyllic and K-silicate alteration zones developed predominantly in a middle to late Carboniferous intrusive complex composed of monzonite and granodiorite porphyry. Zircon U–Pb dating yielded an age of 327.2 ± 5.6 Ma for the ore-hosting monzonite and an age of 313.6 ± 2.8 Ma for the ore-bearing granodiorite porphyry. Re–Os dating of seven molybdenite samples from stockwork and veinlet ores yielded model ages from 313.2 to 306.3 Ma, with two well-constrained isochron ages of 307.6 ± 2.5 Ma (five stockwork ores) and 309.1 ± 2.2 Ma (five stockwork ores and two veinlet ores), respectively. These results indicate that Cu–Au mineralization post-dated the emplacement of the monzonite, started right after the emplacement of the granodiorite porphyry, and lasted for ca. 7 Ma afterward. The geochronological and geochemical data suggest that the Kalmakyr deposit was formed in a late Carboniferous mature magmatic arc setting, probably related to the latest subduction process of the Turkestan Ocean beneath the Middle Tien Shan. The εHf(t) values of zircon grains from the monzonite vary from +11 to +1.7, with an average of +5.1, and those of zircon grains from the granodiorite porphyry range from +5.7 to −1.8, with an average of +2.4. These data indicate that the magma of both monzonite and granodiorite porphyry was derived from partial melting of a thickened lower crust with input of mantle components and variable crustal contamination, and that there was more mantle contribution to the formation of the monzonite than the granodiorite porphyry. The high rhenium concentrations of molybdenite (98–899 ppm) also indicate major mantle contribution of rhenium and by inference ore metals. The relatively high EuN/EuN1 values (average 0.68), Ce4+/Ce3 values (average 890) and Ce/Nd values (average 36.8) for zircon grains from the granodiorite porphyry than those from the monzonite (average EuN/EuN1 = 0.33, average Ce4+/Ce3 = 624, average Ce/Nd = 3.9) suggest that the magma for the syn-mineralization granodiorite porphyry has higher oxygen fugacity than that for the pre-mineralization monzonite. Based on these data, it is proposed that while the monzonite was emplaced, the oxygen fugacity and volatile contents in the magma were relatively low, and ore metals might disperse in the intrusive rock, whereas when the granodiorite porphyry was emplaced, the oxygen fugacity and volatile contents in the magma were increased, favoring copper and gold enrichment in the magmatic fluids. The Kalmakyr deposit formed from a long-lived magmatic-hydrothermal system connected with fertile magmatic sources in relation to the subduction of the Turkestan Ocean beneath the Middle Tien Shan.  相似文献   

10.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

11.
A new high sulfidation epithermal Cu–Au occurrence (Nadun) has been discovered adjacent to the Cretaceous Duolong porphyry Cu–Au deposit within the Bangong–Nujiang metallogenic belt, central Tibet. The Nadun Cu–Au mineralization is hosted in a tectonic–hydrothermal breccia with advanced argillic alteration, which occurs above sandstone, associated with quartz–pyrite veins. The granodiorite porphyry with strong argillic alteration yields a zircon U–Pb age of 119.1 ± 1.3 Ma, whereas the weakly argillic granodiorite porphyry intruded into the breccia has a younger age of 116.1 ± 1.3 Ma. This indicates that Cu–Au epithermal mineralization likely occurred between ~ 116 Ma and ~ 119 Ma, consistent with the duration of magmatic–hydrothermal activity at Duolong (~ 115–118 Ma), and providing evidence that Nadun and Duolong were formed during the same event. Moreover, the Nadun and Duolong porphyries have similar Hf isotopic compositions (εHf(t) values ranging from − 8.8 to 8.1; mean = 5.0 ± 1.1, n = 32), likely indicating that the deposits are comagmatic. In addition, boiling assemblages in vapor-rich inclusions coexisting with brines occur in early stage quartz–pyrite veins, and likely record phase separation at a temperature of > 550–300 °C and pressure of 700–110 bars. Most liquid-rich fluid inclusions formed at the breccia stage show similar salinity (1.7–19.3 wt.% NaCl equiv) to vapor-rich inclusions from the underlying quartz–pyrite veins, likely indicating vapor contraction during cooling at elevated presssure. This suggests that quartz–pyrite veins may act as conduits for ore-forming fluid traveling from the porphyry to the epithermal hydrothermal system. O and H isotopic compositions (δ18Ofluid = 0.42–9.71‰ and δD =  102 to − 66‰) suggest that ore-forming fluids are dominantly from a magmatic source with a minor addition of meteoric water at a later stage. The S and Fe isotope compositions of sulfides (δ34S =  5.9 to 0.5‰ and δ57Fe =  2.15 to 0.17‰) decrease from the quartz–pyrite vein to breccia ore, indicating that ore-forming fluids gradually become SO42-enriched and relatively oxidized. This body of evidence suggests that the Nadun Cu–Au mineralization may represent the root of a high sulfidation epithermal deposit.  相似文献   

12.
The super-large Shuangjianzishan Pb–Zn–Ag deposit is a newly discovered deposit located in the Huanggang–Ganzhuermiao polymetallic metallogenic belt of Inner Mongolia, NE China. The deposit's resource includes 0.026 Mt Ag, 1.1 Mt Pb, and 3.3 Mt Zn. The deposit is controlled by a NW-trending ductile shear zone and NE- and NW-trending faults in black pelite assigned to the lower Permian Dashizhai Formation. LREE enrichment, HREE depletion, Nb, Ta, P, and Ti depletion, and Zr and Hf enrichment characterize felsic magmatic rocks in the Shuangjianzishan Pb–Zn–Ag district. The ages of porphyritic monzogranite, rhyolitic crystal–vitric ignimbrite, and porphyritic granodiorite are 254–252, 169, and 130 Ma, respectively. Pyrite sampled from the mineralization has Re–Os isochron ages of 165 ± 7 Ma, which suggest the mineralization is associated with the ca. 169 Ma magmatism in the Shuangjianzishan district.Zircons extracted from the porphyritic granodiorite yield εHf(t) values of − 11.34 to − 1.41, with tDM2 dates of 1275–1901 Ma. The εHf(t) values of zircons in the rhyolitic crystal–vitric ignimbrite and the ore-bearing monzogranite porphyry are 7.57–16.23 and 10.18–15.96, respectively, and their tDM2 ages are 177–733 and 257–632 Ma, respectively. Partial melting of depleted mantle resulted in the formation of the ca. 254–252 Ma ore-bearing porphyritic monzogranite and the ca. 169 Ma rhyolitic crystal–vitric ignimbrite; dehydration partial melting of subducted oceanic crust resulted in the formation of the ca. 130 Ma porphyritic granodiorite. The porphyritic monzogranite was emplaced during the late stages of closure of the Paleo-Asian Ocean during the transformation from a collisional to extensional tectonic setting. The ca. 170 and ca. 130 Ma magmatism and mineralization in the Shuangjianzishan district are related to subduction of the Mongolia–Okhotsk Ocean and subduction of the Paleo-Pacific Ocean Plate, respectively.  相似文献   

13.
Porphyry Cu deposits occurred in the southern West Junggar of Xinjiang, NW China and are represented by the Baogutu and newly-discovered Jiamantieliek porphyry Cu deposits. Petrographical and geochemical studies show that both Jiamantieliek and Baogutu ore-bearing intrusions comprise main-stage diorite stock and minor late-stage diorite porphyry dikes and are the calc-alkaline intermediate intrusions. Based on U–Pb zircon SHRIMP analyses, the Jiamantieliek intrusion formed in 313 ± 4 Ma and 310 ± 5 Ma, while, based on U–Pb zircon SIMS analyses, the Baogutu intrusion formed in 313 ± 2 Ma and 312 ± 2 Ma. Rocks in the Jiamantieliek intrusion are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) with negative Nb anomaly. Their isotopic compositions (εNd(t) = +1.6 to +3.4, (87Sr/86Sr)i = 0.70369–0.70401, (207Pb/204Pb)i = 15.31–5.41) suggest a mixing origin from depleted to enriched mantle sources. In the Baogutu intrusion, the rocks are similar to those of the Jiamantieliek intrusion. Their Sr-Nd-Pb isotopic composition (εNd(t) = +4.4 to +6.0, (87Sr/86Sr)i = 0.70368–0.70385, (207Pb/204Pb)i = 15.34–5.42) shows a more depleted mantle source. These features suggest generation in an island arc. The Jiamantieliek and Baogutu intrusions have similar characteristics, indicating that a relatively uniform and integrated source region has existed in the southern West Junggar since the Palaeozoic. A larger contribution of calc-alkaline magma would be required to generate the Jiamantieliek intrusion, which may reflect the development of magma arc maturation towards the western section of the southern West Junggar.  相似文献   

14.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

15.
The Gaojiabang W-Mo mineralized granodiorite porphyry occurs as a “satellite” intrusion on the northern margin of the Qingyang-Jiuhua pluton in southern Anhui Province, South China. The geology, mineral and whole-rock geochemistry of the granodiorite porphyry is I-type and formed from a reduced melt. The Gaojiabang mineralized granodiorite porphyry was derived from the transition zone between the lower crust and upper mantle, and underwent high-degree fractional crystallization during emplacement. There is no obvious genetic relationship between the granodiorite porphyry and the granodiorite pluton of the Qingyang-Jiuhua plutonic complex. The key characteristics of the W-Mo mineralized Gaojiabang granodiorite porphyry include: 1) small volume (<0.5 km3), 2) an abundance of hornblende (>5 vol%), 3) low ∑REE concentrations (145.50–159.46 ppm) accompanying weak negative Eu anomalies (0.85–0.94), 4) high differentiation-indices degree and water contents, and 5) low oxygen fugacity. These criteria can be used to identify potential W-Mo mineralized intrusions in southern Anhui Province, South China.  相似文献   

16.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

17.
The newly discovered Yuanlingzhai porphyry molybdenum (Mo) deposit in southern Jiangxi province belongs to the group of Mo-only deposits in the Nanling region. The mineralization developed at contact zones between the Yuanlingzhai granite porphyry and Neoproterozoic metamorphic rocks of the Xunwu Formation. Precise LA–MC–ICPMS zircon U–Pb dating of the Yuanlingzhai porphyry, as well as the adjacent western Keshubei and eastern Keshubei granites, yielded ages of 165.49 ± 0.59 Ma, 159.68 ± 0.43 Ma, and 185.13 ± 0.52–195.14 ± 0.63 Ma, respectively. Molybdenite Re–Os isochron ages of the ores are 160 ± 1–162.7 ± 1.1 Ma, which is consistent with the age of large-scale W–Sn deposits in South China. The Yuanlingzhai porphyry is characterized by high K2O, P2O5, and A/CNK (1.33–1.59), and low CaO and Na2O. The rock shows relatively enriched LREE without significant Eu anomalies (Eu/Eu* = 0.80–0.90). Geochemical and mineralogical characteristics indicate that the ore-hosting porphyry is a typical S-type granite generated from the partial melting of crustal material with only minor mantle contribution. Both Harker and evolutionary discrimination diagrams indicate that the Yuanlangzhai and western Keshubei granites are not products of co-magmatic evolution. The Keshubei granites and Xunwu Formation were not significant sources for the components in the porphyry mineralization, but the Yuanlangzhai granite may have supplied some ore-forming material. However, the main ore-forming material was carried by fluids from deep sources, as demonstrated by fluid inclusion and stable isotope data from the molybdenum deposit. The Mo porphyry deposit formed in an extensional setting, and was possibly associated with Jurassic subduction of the Izanagi Plate.  相似文献   

18.
The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U–Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the ore-related porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO2 and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0 ± 5.9 Ma, consistent with the porphyry zircon U–Pb age (36.07 ± 0.43 Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206Pb/238U age of 33.1 ± 1.0 Ma (MSWD = 2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1 Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma.  相似文献   

19.
We constrain the origin and tectonic setting of the giant Duolong porphyry–epithermal Cu–Au deposit in the South Qiangtang Terrane of northern Tibet, based on new zircon U–Pb ages and Hf isotopic data, as well as whole-rock major and trace element data from poorly studied ore-associated intrusions in the Duolong area. The LA–ICP–MS zircon U–Pb dating indicates that the ore-associated rocks formed between 121 and 126 Ma. These ore-associated rocks are geochemically similar to low-K tholeiitic M-type granitoids and to mid- to high-K, calc-alkaline I-type granitoids. They have variable and predominantly positive zircon εHf(t) values (− 1.4 to + 15.6) and variable crustal model ages (TCDM(Hf); 176–1122 Ma). Taking into account previous data and the regional geology of the study area, we propose that the ore-associated rocks originated from fractional crystallization of mantle-derived mafic melts and magma mixing of mantle-derived mafic and hybrid lower crust-derived felsic melts, and the hybrid lower crust included a mix of juvenile and older continental material. The Duolong porphyry–epithermal Cu–Au deposit formed within an ‘ensialic forearc’ of an active continental margin as a result of the northwards subduction of the Bangong–Nujiang Ocean crust beneath the South Qiangtang Terrane.  相似文献   

20.
《Ore Geology Reviews》2007,30(3-4):307-324
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号