首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Vani manganese deposit is located in the rugged NW sector of Milos Island. It occurs within the Vani volcano-sedimentary basin, which is underlain by dacitic domes and flows of Upper Pliocene age (3.5–2.0 Ma). The end of the emplacement of the dacites was marked by the collapse of the magma chamber, which resulted in a huge pyroclastic episode and the deposition of a thick layer of pyroclastic material within a shallow submarine basin. This pyroclastic material subsequently compacted to form the volcaniclastic sandstone, which became the host for the manganese ore beds which were about 4 m thick in the two sections studied. Hydrothermal fluids penetrated these sandstone horizons via fractures and fissures to produce the manganese deposit. The permeable nature of the sandstone facilitated the retention of the hydrothermal fluids within these layers. This permitted the fluids to cool slowly and deposit the manganese oxides almost quantitatively. Formation of the hydrothermal manganese deposit took place fairly rapidly over a period of several tens of thousands of years at most. Strong tectonic activity resulted in rapid uplift of the area which elevated the deposit above sea level.Two generations of manganese oxides have been identified within this deposit; the first generation consists of pyrolusite and ramsdellite; the second generation of oxides of the isostructural series cryptomelane–hollandite–coronadite plus hydrohetaerolite characterized by high contents of K, Ba, Pb and Zn, respectively. This sequence is the result of a two-stage process of formation of the manganese-oxide minerals in which a second high-salinity hydrothermal fluid enriched in Ba, Pb and Zn as a result of the dissolution of sulphide minerals remineralized the original manganese-oxide assemblage. It is this two-stage process of formation, which was mainly responsible for the unique characteristics of this deposit. Although formed in a submarine setting, the deposit shows marked differences in mineralogy and composition from known submarine hydrothermal manganese deposits and is most analogous to the epithermal vein deposits of the southwestern United States.  相似文献   

2.
This study investigated Holocene and fossil hydrothermal manganese deposits in the Izu-Ogasawara arc. Mineralogically, these deposits comprise 10 Å and 7 Å manganate minerals, and the fossil samples showed higher 10 Å stabilities. Chemical compositions of the Holocene samples are typical of other hydrothermal manganese deposits, including low Fe/Mn ratios, low trace metals, and low rare earth elements. Although the fossil samples generally have similar chemical characteristics, they exhibit significant enrichment in Ni, Cu, Zn, Cd, Ba, REE, Tl, and Pb contents. Furthermore, the chondrite-normalized REE patterns showed more light REE enrichment trends. These chemical characteristics suggest post-depositional uptake of these metals from seawater. U-Th dating of a Holocene hydrothermal manganese deposit from the Kaikata Seamount indicated 8.8 ± 0.94 ka for the uppermost layer and downward growth beneath the seafloor with a growth rate of ca. 2 mm/kyr. This is approximately three orders of magnitude faster than that of hydrogenetic ferromanganese crusts. U-Pb age of a fossil hydrothermal manganese deposit from the Nishi-Jokyo Seamount showed 4.4 ± 1.6 Ma, which was contemporary with basaltic volcanism (5.8 ± 0.3 Ma). Hydrothermal manganese deposits contain high concentrations of high value Mn, but only small amounts of valuable minor metals; their ages constrain the periods of past hydrothermal activity and provide a vector to explore for polymetallic sulfide deposits.  相似文献   

3.
Milos Island contains several epithermal deposits (e.g., Profitis Ilias–Chondro Vouno Pb–Zn–Ag–Au–Te–Cu, Triades–Galana–Agathia–Kondaros Pb–Zn–Ag–Bi–W–Mo ± Cu–Au, and Katsimoutis–Kondaros–Vani Pb–Zn–Ag–Mn) of Late Pliocene to Early Pleistocene age. These deposits are hosted in calc-alkaline volcanic rocks emplaced as a result of three successive magma pulses in an emergent volcanic edifice: submarine rhyolitic to rhyodacitic cryptodomes at ca. 2.7. Ma (Profitis Ilias–Chondro Vouno), submarine to subaerial andesite to dacite domes at ca. 2.2 to 1.5 Ma (Triades–Galana–Kondaros–Katsimouti–Vani). Hydrothermal alteration of the volcanic rocks includes advanced argillic- (both hypogene and steam-heated), argillic, phyllic, adularia-sericite and propylitic types. In the northern sector (Triades–Galana–Agathia–Kondaros), initial magma degassing derived from andesitic–dacitic intrusives along NE–SW to E–W trending faults resulted in the development of pre-ore hypogene advanced argillic alteration (dickite, alunite, ± diaspore, pyrophyllite, halite, and pyrite) in a submarine environment. Mineralogical data indicate common features among the Profitis Ilias–Chondro Vouno, Kondaros–Katsimoutis–Vani and Triades–Galana mineralized centers, all of which are characterized by the presence of galena, Fe-poor sphalerite, and chalcopyrite as well as abundant barite, adularia, sericite and, to a lesser extent, calcite, which are typical of intermediate-sulfidation epithermal type deposits. Locally, at Triades–Galana and Kondaros–Agathia, high-sulfidation conditions prevailed as suggested by the presence of coexisting enargite and covellite. The high silver and gold content of the western Milos deposits is derived from Ag-bearing sulfosalts (polybasite, pearceite, pyrargyrite, freibergite) and tellurides. Gold at Profitis Ilias, both as native gold and silver-gold tellurides, is present in base-metal precipitates within multicomponent blebs, which recrystallized to form hessite, petzite, altaite, coloradoite, and native gold. Mineralogical evidence (e.g. microchimney structures, copper sulfides, widespread occurrence of barite, aragonite) suggests that precious metal mineralization in western Milos mineralization formed in a submarine setting.We present information on the surface distribution of Au, Ag, Cu, Pb, Zn, As, Sb, Hg, Mo, Bi, W and Cd at western Milos. Gold is enriched at Profitis Ilias–Chondro Vouno deposits and to a lesser extent at Triades–Galana. Arsenic is absent from the southern sector but shows elevated concentrations together with molybdenum, bismuth and tungsten at the northern sector (Triades–Galana, Vani deposits). The differences in precious and base metal abundances may be related to the depths at which the deposits are exposed, and/or different sources of magma. The metal signatures of the Triades–Galana and Agathia–Kondaros–Katsimouti–Vani (Mo–Bi–W–As–Hg–Ag–Au) occurrences compared to Profitis Ilias (Te–Au–Ag) reflect different sources of magma (dacite–rhyodacite for Profitis Ilias, andesite–dacite for Triades–Galana, and dacite for Kondaros–Katsimoutis). The enrichment of Te, Mo, W, and Bi in the deposits is a strong indication of a direct magmatic contribution of these metals.At western Milos, precious and base-metal vein mineralization was deposited during episodic injection of magmatic volatiles and dilution of the hydrothermal fluids by seawater. The mineralization represents seafloor/sub-seafloor precipitation of sulfides that formed in stockwork zones. Base and precious metal mineralization formed from intermediate- to high-sulfidation state fluids and mostly under boiling conditions as indicated by the widespread occurrence of adularia associated with metallic mineralization. We speculate that the widespread occurrence of boiling and the shallow depth of the precious- and base-metal emplacement prevented the formation of seafloor massive sulfides.  相似文献   

4.
The North China craton hosts numerous iron skarn deposits containing more than 2600 Mt of iron ores, mostly with an average grade of >45 wt% Fe, which have been among the most important source of high-grade iron ores for the last three decades in China. These deposits typically form clusters and can be roughly divided into the western and eastern belts, which are located in the middle of Trans-North China orogen and to the west of the Tan-Lu fault zone in the eastern part of North China craton, respectively. The western belt mainly consists of the southern Taihang district, as well as the Linfen and Taiyuan ore fields, whereas the eastern belt comprises the Luxi and Xu-Huai districts. The Zhangjiawa deposit in the Luxi district has proven reserves of 290 Mt at an average of 46% Fe (up to >65%). The iron mineralization occurs mainly along contact zones between the Kuangshan dioritic intrusion and middle Ordovician marine carbonate rocks that host numerous evaporite intercalations. Titanite grains from the mineralized skarn are closely intergrown with magnetite and retrograde skarn minerals including chlorite, phlogopite and minor epidote, indicating a hydrothermal origin. The titanite grains have extremely low REE contents and low Th/U ratios, consistent with their precipitation directly from hydrothermal fluids responsible for the iron mineralization. Ten hydrothermal titanite grains yield a weighted mean 206Pb/238U age of 131.0 ± 3.9 Ma (MSWD = 0.1, 1σ), which is in excellent agreement with a zircon U-Pb age (130 ± 1 Ma) of the ore-related diorite. This age consistency confirms that the iron skarn mineralization is temporally and likely genetically related to the Kuangshan intrusion. Results from this study, when combined with existing isotopic age data, suggest that iron skarn mineralization and associated magmatism throughout both the eastern and western belts took place coevally between 135 and 125 Ma, with a peak at ca. 130 Ma. As such, those deposits may represent the world's only major Phanerozoic iron skarn concentration hosted in Precambrian cratons. The magmatism and associated iron skarn mineralization coincide temporally with the culmination of lithospheric thinning and destruction of the North China craton, implying a causal link between the two.  相似文献   

5.
The Cheshmeh-Frezi Mn deposit belongs to the southwest Sabzevar basin to the north of the Central Iranian microcontinent. This basin, which hosts abundant mineral deposits including Mn exhalative and Besshi-type Cu-Zn volcanogenic massive sulfide deposits, followed an evolution closely related to the subduction of the Neo-Tethys oceanic crust beneath the Central Iranian microcontinent. Two major sedimentary sequences are recorded within this basin: (I) the Lower Late Cretaceous volcano-sedimentary sequence (LLCVSS) and (II) the Upper Late Cretaceous sedimentary dominated sequence (ULCSS). The Cheshmeh-Frezi Mn deposit is hosted within red tuff with interbeds of green tuffaceous sandstone of the LLCVSS. Mineralization occurs as stratiform blanket-like and tabular orebodies. Psilomelane, pyrolusite and braunite are the main minerals of the ore, which display a variety of textures. Such as layered, laminated, disseminated, massive, replacement or open space fillings. The footwall and hanging-wall volcanic rocks are predominantly andesite and trachyandesite rocks. Footwall and hangingwall volcanic rocks at Cheshmeh-Frezi are enriched in light rare earth elements (LREEs) compared to chondrite, have steep REE patterns, and generally show Ta and Nb depletions relative to chondrite which are characteristic of back-arc environments. The significant geochemical characteristics of ore such as high Mn content (12.41–33.14 wt%; average 19.41 wt%), low concentration of Fe (0.64–2.27 wt%; average 1.63 wt%), high Ba (49.7–9901 ppm, average 2728.67 ppm), LREE > HREE, and negative Ce and Eu anomalies reveal a primary distal hydrothermal-exhalative source for mineralization. Cheshmeh-Frezi deposit, in comparison with different types of volcanogenic manganese deposits shows broad similarities with the Cuban-type Mn deposits such as tectonic, host and associated rock types, geometry, textures, structures, mineralogy and lithogeochemistry.  相似文献   

6.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

7.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

8.
Xincheng is a world-class orogenic-gold deposit hosted by the Early Cretaceous Guojialing granitoid in the Jiaodong Peninsula, eastern China. A zircon U–Pb age of 126 ± 1.4 Ma, together with previous data, constrain the emplacement of the Guojialing intrusion to 132–123 Ma. The granitoid underwent subsolidus ductile deformation at >500 °C following its intrusion. The small difference in age between the youngest zircon U–Pb age of unaltered granitoid (~123 Ma) and the ca. 120 Ma 40Ar/39Ar ages of sericite, associated with breccias and gold mineralization within it indicate initial rapid cooling from magmatic temperatures to those prevalent during brittle deformation and associated gold mineralization at ~220–300 °C. Evidence of a direct association between granitic magmatism and gold mineralization, such as at least localized near-magmatic depositional temperatures and metal zoning evident in undoubted intrusion-related gold deposits, is absent. The 40Ar/39Ar age of ~120 Ma coincides with the mineralization age of many other orogenic-gold deposits along the Jiaojia Fault. Sixteen zircon fission-track (ZFT) ages across the ore and alteration zones range from 112.9 ± 3.4 to 99.1 ± 2.7 Ma. The long period of cooling to the ~100 Ma ZFT closure temperatures recorded here suggests that ambient temperatures for hydrothermal alteration systems lasted to ~100 Ma, possibly because of their focus at Xincheng within the young Guojialing granitoid as it cooled more slowly below approximately 300 °C to 220 °C. However, the restricted number of auriferous ore stages, combined with the presence of cross-cutting gold-free quartz-carbonate veins, indicate that gold itself was only deposited over a restricted time interval at ~120 Ma, consistent with studies of orogenic gold deposits elsewhere. This highlights the complex interplay between magmatism, deformation and the longevity of hydrothermal systems that cause genetic controversies. Based on apatite fission-track (AFT) ages, the Xincheng gold deposit was then uplifted and exhumed to near the surface of the crust at 15 Ma, probably due to movement on the crustal-scale Tan-Lu Fault. Recognition of such exhumation histories along gold belts has conceptual exploration significance in terms of the probability of discovery of additional exposed or sub-surface gold ore bodies as discovery is as much a function of preservation as formation of the deposits.  相似文献   

9.
《Gondwana Research》2014,26(4):1469-1483
China's largest gold resource is located in the highly endowed northwestern part of the Jiaodong gold province. Most gold deposits in this area are associated with the NE- to NNE-trending shear zones on the margins of the 130–126 Ma Guojialing granite. These deposits collectively formed at ca. 120 ± 5 Ma during rapid uplift of the granite. The Dayingezhuang deposit is a large (> 120 t Au) orogenic gold deposit in the same area, but located along the eastern margin of the Late Jurassic Linglong Metamorphic Core Complex. New 40Ar/39Ar geochronology on hydrothermal sericite and muscovite from the Dayingezhuang deposit indicate the gold event is related to evolution of the core complex at 130 ± 4 Ma and is the earliest important gold event that is well-documented in the province. The Dayingezhuang deposit occurs along the Linglong detachment fault, which defines the eastern edge of the ca. 160–150 Ma Linglong granite–granodiorite massif. The anatectic rocks of the massif were rapidly uplifted, at rates of at least 1 km/m.y. from depths of 25–30 km, to form the metamorphic core complex. The detachment fault, with Precambrian metamorphic basement rocks in the hangingwall and the Linglong granitoids and migmatites in the footwall, is characterized by early mylonitization and a local brittle overprinting in the footwall. Gold is associated with quartz–sericite–pyrite–K-feldspar altered footwall cataclasites at the southernmost area of the brittle deformation along the detachment fault. Our results indicate that there were two successive, yet distinct gold-forming tectonic episodes in northwestern Jiaodong. One event first reactivated the detachment fault along the edge of the Linglong massif between 134 and 126 Ma, and then a second reactivated the shears along the margins of the Guojialing granite. Both events may relate to a component of northwest compression after a middle Early Cretaceous shift from regional NW–SE extension to a NE–SW extensional regime.  相似文献   

10.
The Mokrsko-West deposit is unique among European Variscan gold deposits from the points of view of both the structure (an approx. 200 m thick complex of sheeted, several mm-thick, densely spaced quartz veins) and the economic viability (gold reserves of about 100 t). The deposit is hosted mainly by tonalite of the calc-alkaline Sázava tonalite suite (ca. 354 Ma) of the Central Bohemian Plutonic Complex. Mineralization is characterized by quartz-dominated gangue, no visible hydrothermal alteration, low sulfide content, high fineness native gold accompanied by maldonite, aurostibite, native bismuth and numerous Bi–Te–(S) phases. Five mineralogical stages are described in great detail. Arsenopyrite and chlorite thermometers, mineral phase stabilities and published isotope and fluid inclusion data are used to reconstruct the temperature and compositional evolution of the system. The role of liquid bismuth in the sequestration of gold is also discussed.The deposit shares the features of both orogenic gold (ORG) and intrusion-related gold (IRG) deposits. The IRG model is advocated by close spatial association between the ore zone and the tonalite host-intrusion, by the absence/scarcity of hydrothermal alteration, by the Au–Bi–Te–As elemental association and by marked thermal gradients from the early to late mineralization stages. The ORG model is advocated by an approx. 15–10 Ma gap between the intrusion of the tonalite-host and the ore formation, by isotope and geochemical evidence for a key role of metamorphic fluids in the mobilization and transfer of many elements/species (inclusive S and Au). The apparently ambiguous classification of the deposit can most probably be attributed to deposit formation at a depth of ≥ 9 km and to setting of the deposit at/inside a large-scale plutonic complex with multiple and prolonged tectonic and intrusive activity.  相似文献   

11.
High-grade fault-hosted manganese deposits at the Woodie Woodie Mine, East Pilbara, are predominantly hydrothermal in origin with a late supergene overprint. The dominant manganese minerals are pyrolusite, braunite, and cryptomelane. The ore bodies are located on, or near the unconformities between the Neoarchean Carawine Dolomite and the Paleoproterozoic Pinjian Chert breccia (weathering product of Carawine Dolomite), and sedimentary units of the overlying ca 1300–1100 Ma Manganese Group. Stratabound manganese is typically located above or adjacent to steep fault-hosted manganese. The ore bodies range in size from 0.2 to 5.5 Mt with an average of 0.5 Mt. Historically, over 35 Mt of manganese has been mined at Woodie Woodie, and current ore resources are 29.94 Mt at 39.94% Mn, 6.96% Fe (resource and reserves statement, June 2011, Consolidated Minerals Pty Ltd).Manganese mineralization at Woodie Woodie is related to northwest–southeast directed extension and basin formation during the Mesoproterozoic. Basin architecture is generally well preserved and major manganese occurrences are localised along growth faults which down-throw the Pinjian Chert Breccia into local extensional basins. Manganese ore bodies are typically located on steep 2nd and 3rd order structures that extend off the major growth faults. Mineralized structures display a dominant northeast-trend reflecting the direction of maximum dilation during northwest–southeast extension.A paragenetic sequence is identified for the manganese ore at Woodie Woodie, with early hydrothermal braunite–pyrolusite–cryptomelane–todorokite–hausmannite, overprinted by late supergene oxides. Preliminary fluid inclusion studies in quartz crystals intergrown with pyrolusite and cryptomelane indicate that primary and pseudosecondary inclusions display a range of salinities from 1 to 18 eq. wt.% NaCl and trapping temperatures estimated to be from 220º to 290º at 1 kbar pressure.A lead–manganese oxide (coronadite) is common in manganese ores at Woodie Woodie, and Pb-isotope studies of 40 lead-rich ore samples from 16 pits indicate mineralization occurred within an age range of 955–1100 Ma. A mixed source is suggested for the lead, but was predominantly basalts and/or volcanogenic sedimentary units (e.g., Jeerinah Formation) of the ca 2700 Ma Fortescue Group. The typically high Mn:Fe ratios and enrichment in elements such as Pb, As, Cu, Mo, Zn are consistent with a dominantly hydrothermal origin for the manganese at Woodie Woodie. Supergene manganese is distinguished from hypogene manganese by a marked enrichment in REE in the supergene manganese.An early structural framework, established during Neoarchean rifting, provides a major structural control on manganese ore distribution. The Woodie Woodie mine corridor is located in a zone of oblique strike-slip extension on major northwest-trending transform faults and north-trending oblique normal faults. A major transform structure at the southern end of the Woodie Woodie mine corridor (Jewel-Southwest Fault Zone) likely acted as a major fluid conduit for manganese-bearing hydrothermal fluids and this would account for the concentration of significant manganese ore occurrences to the north and south of this structure.  相似文献   

12.
Most skarn deposits are closely related to granitoids that intruded into carbonate rocks. The Cihai (>100 Mt at 45% Fe) is a deposit with mineral assemblages and hydrothermal features similar to many other typical skarn deposits of the world. However, the iron orebodies of Cihai are mainly hosted within the diabase and not in contact with carbonate rocks. In addition, some magnetite grains exhibit unusual relatively high TiO2 content. These features are not consistent with the typical skarn iron deposit. Different hydrothermal and/or magmatic processes are being actively investigated for its origin. Because of a lack of systematic studies of geology, mineral compositions, fluid inclusions, and isotopes, the genetic type, ore genesis, and hydrothermal evolution of this deposit are still poorly understood and remain controversial.The skarn mineral assemblages are the alteration products of diabase. Three main paragenetic stages of skarn formation and ore deposition have been recognized based on petrographic observations, which show a prograde skarn stage (garnet-clinopyroxene-disseminated magnetite), a retrograde skarn stage (main iron ore stage, massive magnetite-amphibole-epidote ± ilvaite), and a quartz-sulfide stage (quartz-calcite-pyrite-pyrrhotite-cobaltite).Overall, the compositions of garnet, clinpyroxene, and amphibole are consistent with those of typical skarn Fe deposits worldwide. In the disseminated ores, some magnetite grains exhibit relatively high TiO2 content (>1 wt.%), which may be inherited from the diabase protoliths. Some distinct chemical zoning in magnetite grains were observed in this study, wherein cores are enriched in Ti, and magnetite rims show a pronounced depletion in Ti. The textural and compositional data of magnetite confirm that the Cihai Fe deposit is of hydrothermal origin, rather than associated with iron rich melts as previously suggested.Fluid inclusions study reveal that, the prograde skarn (garnet and pyroxene) formed from high temperature (520–600 °C), moderate- to high-salinity (8.1–23.1 wt.% NaCl equiv, and >46 wt.% NaCl equiv) fluids. Massive iron ore and retrograde skarn assemblages (amphibole-epidote ± ilvaite) formed under hydrostatic condition after the fracturing of early skarn. Fluids in this stage had lower temperature (220°–456 °C) and salinity (8.4–16.3 wt.% NaCl equiv). Fluid inclusions in quartz-sulfide stage quartz and calcite also record similar conditions, with temperature range from 128° to 367 °C and salinity range from 0.2 to 22.9 wt.% NaCl equiv. Oxygen and hydrogen isotopic data of garnet and quartz suggest that mixing and dilution of early magmatic fluids with external fluids (e.g., meteoric waters) caused a decrease in fluid temperature and salinity in the later stages of the skarn formation and massive iron precipitation. The δ18O values of magnetite from iron ores vary between 4.1 and 8.5‰, which are similar to values reported in other skarn Fe deposits. Such values are distinct from those of other iron ore deposits such as Kiruna-type and magmatic Fe-Ti-V deposits worldwide. Taken together, these geologic, geochemical, and isotopic data confirm that Cihai is a diabase-hosted skarn deposit related to the granitoids at depth.  相似文献   

13.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

14.
The Ulu Sokor gold deposit is one of the most famous and largest gold deposits in Malaysia and is located in the Central Gold Belt. This deposit consists of three major orebodies that are related to NS- and NE-striking fractures within fault zones in Permian-Triassic meta-sedimentary and volcanic rocks of the East Malaya Block. The faulting events represent different episodes that are related to each orebody and are correlated well with the mineralogy and paragenesis. The gold mineralization consists of quartz-dominant vein systems with sulfides and carbonates. The hydrothermal alteration and mineralization occurred during three stages that were characterized by (I) silicification and brecciation; (II) carbonatization, sericitization, and chloritization; and (III) quartz–carbonate veins.Fluid inclusions in the hydrothermal quartz and calcite of the three stages were studied. The primary CO2–CH4–H2O–NaCl fluid inclusions in stage I are mostly related to gold mineralization and display homogenization temperatures of 269–389 °C, salinities of 2.77–11.89 wt.% NaCl equivalent, variable CO2 contents (typically 5–29 mol%), and up to 15 mol% CH4. In stage II, gold was deposited at 235–398 °C from a CO2 ± CH4–H2O–NaCl fluid with a salinity of 0.83–9.28 wt.% NaCl equivalent, variable CO2 contents (typically 5–63 mol%), and up to 4 mol% CH4. The δ18OH2O and δD values of the ore-forming fluids from the stage II quartz veins are 4.5 to 4.8‰ and − 44 to − 42‰, respectively, and indicate a metamorphic–hydrothermal origin. Oxygen fugacities calculated for the entire range of T-P-XCO2 conditions yielded log fO2 values between − 28.95 and − 36.73 for stage I and between − 28.32 and − 39.18 for stage II. These values indicate reduced conditions for these fluids, which are consistent with the mineral paragenesis, fluid inclusion compositions, and isotope values.The presence of daughter mineral-bearing aqueous inclusions is interpreted to be a magmatic signature of stage IIIa. Combined with the oxygen and hydrogen isotopic compositions (δ18OH2O = 6.8 to 11.9‰, δD =  77 to − 62‰), these inclusions indicate that the initial fluid was likely derived from a magmatic source. In stage IIIb, the gold was deposited at 263° to 347 °C from a CO2–CH4–H2O–NaCl fluid with a salinity of 5.33 to 11.05 wt.% NaCl equivalent, variable CO2 contents (typically 9–15 mol%), and little CH4. The oxygen and hydrogen isotopic compositions of this fluid (δ18OH2O = 8.1 to 8.8‰, δD =  44 to − 32‰) indicate that it was mainly derived from a metamorphic–hydrothermal source. The CO2–H2O ± CH4–NaCl fluids that were responsible for gold deposition in the stage IIIc veins had a wide range of temperatures (214–483 °C), salinities of 1.02 to 21.34 wt.% NaCl equivalent, variable CO2 contents (typically 4–53 mol%), and up to 7 mol% CH4. The oxygen and hydrogen isotopic compositions (δ18OH2O = 8.5 to 9.8‰, δD =  70 to − 58‰) were probably acquired at the site of deposition by mixing of the metamorphic–hydrothermal fluid with deep-seated magmatic water and then evolved by degassing at the site of deposition during mineralization. The log fO2 values from − 28.26 to − 35.51 also indicate reduced conditions for this fluid in stage IIIc. Moreover, this fluid had a near-neutral pH and δ34S values of H2S of − 2.32 to 0.83‰, which may reflect the derivation of sulfur from the subducted oceanic lithospheric materials.The three orebodies represent different gold transportation and precipitation models, and the conditions of ore formation are related to distinct events of hydrothermal alteration and gold mineralization. The gold mineralization of the Ulu Sokor deposit occurred in response to complex and concurrent processes involving fluid immiscibility, fluid–rock reactions, and fluid mixing. However, fluid immiscibility was the most important mechanism for gold deposition and occurred in these orebodies, which have corresponding fluid properties, structural controls, geologic characteristics, tectonic settings, and origins of the ore-forming matter. These characteristics of the Ulu Sokor deposit are consistent with its classification as an orogenic gold deposit, while some of the veins are genetically related to intrusions.  相似文献   

15.
Zinkgruvan, a major stratiform Zn-Pb-Ag deposit in the Paleoproterozoic Bergslagen region, south-central Sweden, was overprinted by polyphase ductile deformation and high-grade metamorphism (including partial melting of the host succession) during the 1.9–1.8 Ga Svecokarelian orogeny. This complex history of post-ore modification has made classification of the deposit difficult. General consensus exists on a syngenetic-exhalative origin, yet the deposit has been variably classified as a volcanogenic massive sulfide (VMS) deposit, a sediment-hosted Zn (SEDEX) deposit, and a Broken Hill-type (BHT) deposit. Since 2010, stratabound, cobaltiferous and nickeliferous Cu ore, comprising schlieren and impregnations of Cu, Co and Ni sulfide minerals in dolomitic marble, is mined from the stratigraphic footwall to the stratiform Zn-Pb-Ag ore. This ore type has not been fully integrated into any of the existing genetic models. Based on a combination of 1) widespread hematite-staining and oxidizing conditions (Fe2O3 > FeO) in the stratigraphic footwall, 2) presence of graphite and reducing conditions (Fe2O3 < FeO) in the ore horizon and hangingwall and 3) intense K-feldspar alteration and lack of feldspar-destructive alteration in the stratigraphic footwall, we suggest that both the stratiform Zn-Pb-Ag and the dolomite-hosted Cu ore can be attributed to the ascent and discharge of an oxidized, saline brine at near neutral pH. Interaction of this brine with organic matter below the seafloor, especially within limestone, formed stratabound, disseminated Cu ore, and exhalation of the brine into a reduced environment on the sea floor produced a brine pool from which the regionally extensive (>5 km) Zn-Pb-Ag ore was precipitated.Both ore types are characterized by significant spread in δ34S, with the sulfur in the Cu ore and associate marble-hosted Zn mineralization on average being somewhat heavier (δ34S = −4.7 to +10.5‰, average 3.9‰) than that in the stratiform Zn-Pb-Ag ore (δ34S = −6 to +17‰, average 2.0‰). The ranges in δ34S are significantly larger than those observed in syn-volcanic massive sulfide deposits in Bergslagen, for which simple magmatic/volcanic sulfur sources have been invoked. Mixing of magmatic-volcanic sulfur leached from underlying volcanic rocks and sulfur sourced from abiotic or bacterial sulfate reduction in a mixing zone at the seafloor could explain the range observed at Zinkgruvan.A distinct discontinuity in the stratigraphy, at which key stratigraphic units stop abruptly, is interpreted as a syn-sedimentary fault. Metal zonation in the stratiform ore (decreasing Zn/Pb from distal to proximal) and the spatial distribution of Cu mineralization in underlying dolomitic marble suggest that this fault was a major feeder to the mineralization. Our interpretation of ore-forming fluid composition and a dominant redox trap rather than a pH and/or temperature trap differs from most VMS models, with Selwyn-type SEDEX models, and most BHT models. Zinkgruvan has similarities to both McArthur-type SEDEX deposits and sediment-hosted Cu deposits in terms of the inferred ore fluid chemistry, yet the basinal setting has more similarities to BHT and felsic-bimodal VMS districts. We speculate that besides an oxidized footwall stratigraphy, regionally extensive banded iron formations and limestone horizons in the Bergslagen stratigraphy may have aided in buffering ore-forming brines to oxidized, near-neutral conditions. In terms of fluid chemistry, Zinkgruvan could comprise one of the oldest known manifestations of Zn and Cu ore-forming systems involving oxidized near-neutral brines following oxygenation of the Earth’s atmosphere.  相似文献   

16.
Numerous Fe-Cu deposits with mineralization styles similar to iron oxide-copper gold (IOCG) deposits form the Kangdian Fe-Cu metallogenic province, southwestern (SW) China. As one of the largest deposits in the region, the ~ 1.0 Ga Lala Fe-Cu deposit is hosted in a Paleoproterozoic volcanic-sedimentary succession named the Hekou Group which is alternately intruded by ~ 1.0 Ga doleritic plutons. This deposit has a paragenetic sequence evolving from Stage I of Na-alteration to Stage II of Fe mineralization, and finally to Stage III of Cu-(Mo, REE) mineralization, coeval with mafic-felsic intra-plate magmatism in the region. This study conducted in-situ Sr isotopic analyses on apatite and carbonate, aiming to resolve the long controversial issue regarding the origin of the Fe and Cu mineralizing fluids in the deposit. Apatite of Stage II has 87Sr/86Sr ratios varying from 0.71380 to 0.72733, much higher than those of synchronous igneous rocks in the region (0.7074 to 0.7091), but similar to the Paleoproterozoic host rocks (0.71368 to 0.71837 at ~ 1.0 Ga). This similarity indicates that radiogenic Sr of the Fe mineralizing fluid was dominantly sourced from the host rocks. Apatite and calcites of Stage III have 87Sr/86Sr ratios (0.75758–0.79293) much higher than apatite of Stage II and the host rocks but similar to the Archean basement rocks (as high as 0.80 at ~ 1.0 Ga) beneath the cover of the Yangtze Block, suggesting that the highly radiogenic Sr isotopic composition of the Cu mineralizing fluid was mainly inherited from the old basement rocks. In combination with previous C-O-S isotopic data indicating a magma-hydrothermal origin, it was suggested that the Fe mineralizing fluid was exsolved from a mafic magma that generated the ~ 1.0 Ga doleritic plutons, and inherited radiogenic Sr from the host rocks during fluid-rock interaction. By contrast, the Cu mineralizing fluid might have been sourced from another pulse of magmatic, Cu-Mo-REE- and CO2-rich fluid which have once interacted with Archean basement rocks prior to mineralization. The source of such a Cu-Mo-REE-rich fluid was not well constrained in current study but was inferred to be exsolved from a hidden felsic magma. We propose that intrusions of the bimodal magmas in Kangdian are responsible for regional hydrothermal circulation which led to Fe-Cu-(Mo, REE) mineralization in the Kangdian province.  相似文献   

17.
The Tasiast gold deposits are hosted within Mesoarchean rocks of the Aouéouat greenstone belt, Mauritania. The Tasiast Mine consists of two deposits hosted within distinctly different rock types, both situated within the hanging wall of the west-vergent Tasiast thrust. The Piment deposits are hosted within metasedimentary rocks including metaturbidites and banded iron formation where the main mineral association consists of magnetite-quartz-pyrrhotite ± actinolite ± garnet ± biotite. Gold is associated with silica flooding and sulphide replacement of magnetite in the turbidites and in the banded iron formation units. The West Branch deposit is hosted within meta-igneous rocks, mainly diorites and quartz diorites that lie stratigraphically below host rocks of the Piment deposits. Most of the gold mineralisation at West Branch is hosted by quartz–carbonate veins within the sheared and hydrothermally altered meta-diorites that constitute the Greenschist Zone. At Tasiast, gold mineralisation has been defined over a strike length > 10 km and to vertical depths of 740 m. All of the significant mineralised bodies defined to date dip moderately to steeply (45° to 70°) to the east and have a south–southeasterly plunge. Gold deposits on the Tasiast trend are associated with second order shear zones that are splays cutting the hanging wall block of the Tasiast thrust. An age of 2839 ± 36 Ma obtained from the hydrothermal overgrowth on zircons from a quartz vein is interpreted to represent the age of mineralisation.  相似文献   

18.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

19.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

20.
Cu-rich massive sulfide deposits associated with mafic–ultramafic rocks in the southern portion of the Main Urals Fault (MUF) are characterized by variable enrichments in Ni (up to 0.45 wt.%), Co (up to 10 wt.%) and Au (up to 16 ppm in individual hand-specimens). The Cu (Ni–Co)-rich composition of MUF deposits, as opposed to the Cu (Zn)-rich composition of more eastward massive sulfide deposits of broadly similar age along the western flank of the Magnitogorsk arc, reflects the abundance of seafloor-exposed, Ni–Co-rich ultramafic rocks in the most external portion of the Early-Devonian Magnitogorsk forearc. Morphological, textural, and compositional differences between individual deposits are interpreted to be the result of the sulfide deposition style and, in part, of the original subseafloor lithology. One deposit produced by dominantly on-seafloor hydrothermal processes is characterized by pyrite–marcasite  pyrrhotite, not so low Zn grades (occasionally up to 2 wt.%), abundant clastic facies and periodical superficial oxidation. Deposits produced by dominantly subseafloor hydrothermal processes are characterized by pyrrhotite > pyrite, very low Zn (generally < to ≪ 0.1 wt.%), volumetrically minor clastic facies, and multi-layer deposit morphology. Very low Ni/Co ratios in the on-seafloor deposit may indicate a dominant metal contribution from a mafic rather than ultramafic source. The sulfide mineralization was associated with extensive hydrothermal alteration of the host ultramafic and mafic rocks, leading to formation of abundant talc, talc–carbonate and chlorite rocks. Occurrence of large volumes of such altered lithotypes in ophiolitic belts may be considered as a potential searching criteria for MUF-type (Cu, Co, Ni)-deposits. In spite of the contrasting geodynamic environment, geological, geochemical, textural and mineralogical peculiarities of the MUF deposits in many respects are similar to those of ultramafic-hosted massive sulfide deposits along the Mid-Atlantic Ridge. In geological time, supra subduction-zone settings appear to have been more effective than mid-ocean ridge settings for preservation of ultramafic-hosted massive sulfide deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号