首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lermontovskoe deposit (∼48 Kt WO3; average 2.6% WO3, 0.24% Cu, 0.23 g/t Au) is situated in a W-Sn-Au metallogenic belt that formed in a collisional tectonic environment. This tungsten skarn deposit has a W-Au-As-Bi-Te-Sb signature that suggests an affinity with reduced intrusion-related Au deposits. The deposit is associated with an intrusion that is part of the ilmenite-series, high-K peraluminous granitoid (granodiorite to granite) suite. These rocks formed via mantle magma-induced melting of crustal sources.The deposit comprises reduced-type, pyroxene-dominated prograde and retrograde skarns followed by hydrosilicate (amphibole-chlorite-pyrrhotite-scheelite-quartz) and phyllic (muscovite/sericite-carbonate-albite-quartz-scheelite-sulfide, with abundant apatite) alteration assemblages. Fluid inclusions from the skarn assemblages indicate high-temperature (>500 °C), high-pressure (1400–1500 bars) and high-salinity (53–60 wt% NaCl-equiv.) magmatic-hydrothermal fluids. They were post-dated by high-carbonic, methane-dominate, low-salinity fluid at the hydrosilicate alteration stage. These fluids boiled at 360–380 °C and 1300–1400 bars. The subsequent phyllic alteration started again with a high-temperature (>450 °C), high-pressure (1000–1100 bars) and high-salinity (42–47 wt% NaCl-equiv.) fluid, with further incursion of high-carbonic, methane-dominated, low-salinity fluid that boiled at 390–420 °C and 1150–1200 bars. The latest phyllic alteration included the lower-temperature (340–360 °C), lower pressure (370–400 bars) high-carbonic, methane-dominated (but with higher CO2 fraction), low-salinity fluid, and then the low-temperature (250–300 °C) H2O-CO2-CH4-NaCl fluid, with both fluids boiled at the deposit level. The high-salinity aqueous fluids are interpreted to have come from crystallizing granitoid magma, whereas the reduced high-carbonic fluids probably came from a deeper mafic magma source. Both of these fluids potentially contributed to the W-Au-As-Bi-Te-Sb metal budget. Decreasing temperatures coupled with high aCa2+ and fluid boiling promoted scheelite deposition at all post-skarn hydrothermal stages.The deposit is characterized by limited downdip extent of mineralized zones and abundant coarse-grained muscovite-quartz (+apatite, scheelite) aggregates that formed at the phyllic alteration stage. Together with presence of high-temperature, high-pressure and high-salinity fluids directly exsolving from crystallizing magma, this suggests a root level of the mineralized magmatic-hydrothermal system of reduced W skarn deposits.  相似文献   

2.
The Qiangma gold deposit is hosted in the > 1.9 Ga Taihua Supergroup metamorphic rocks in the Xiaoqinling terrane, Qinling Orogen, on the southern margin of the North China Craton. The mineralization can be divided as follows: quartz-pyrite veins early, quartz-polymetallic sulfide veinlets middle, and carbonate-quartz veinlets late stages, with gold being mainly introduced in the middle stage. Three types of fluid inclusions were identified based on petrography and laser Raman spectroscopy, i.e., pure carbonic, carbonic-aqueous (CO2–H2O) and aqueous inclusions.The early-stage quartz contains pure carbonic and CO2–H2O inclusions with salinities up to 12.7 wt.% NaCl equiv., bulk densities of 0.67 to 0.86 g/cm3, and homogenization temperatures of 280−365 °C. The early-stage is related to H2O–CO2 ± N2 ± CH4 fluids with isotopic signatures consistent with a metamorphic origin (δ18Owater = 3.1 to 5.2‰, δD =  37 to − 73‰). The middle-stage quartz contains all three types of fluid inclusions, of which the CO2–H2O and aqueous inclusions yield homogenization temperatures of 249−346 °C and 230−345 °C, respectively. The CO2–H2O inclusions have salinities up to 10.9 wt.% NaCl equiv. and bulk densities of 0.70 to 0.98 g/cm3, with vapor bubbles composed of CO2 and N2. The isotopic ratios (δ18Owater = 2.2 to 3.6‰, δD =  47 to − 79‰) suggest that the middle-stage fluids were mixed by metamorphic and meteoric fluids. In the late-stage quartz only the aqueous inclusions are observed, which have low salinities (0.9−9.9 wt.% NaCl equiv.) and low homogenization temperatures (145−223 °C). The isotopic composition (δ18Owater =  1.9 to 0.5‰, δD =  55 to − 66‰) indicates the late-stage fluids were mainly meteoric water.Trapping pressures estimated from CO2–H2O inclusions are 100−285 MPa for the middle stage, suggesting that gold mineralization mainly occurred at depths of 10 km. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, and fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Qiangma gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic−Early Cretaceous continental collision between the North China and Yangtze cratons.  相似文献   

3.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

4.
Polymetallic vein-type Zn-Pb deposits are located in the Xiangxi–Qiandong zinc-lead metallogenic belt (XQMB) of the northwestern margin of the Jiangnan Orogen, South China. Ores are mainly found in fault-bounded quartz veins hosted in the upper part of the Banxi Group that consists of low-grade metamorphic sandstone, siltstone with minor tuff interbeds. The Zn-Pb deposits primarily contain sphalerite, galena, chalcopyrite and pyrite, accompanied by quartz and minor calcite. Zinc, lead, copper, indium and gallium are enriched in these ores. Investigation of the ore fluid reveals low temperature (87–262 °C) with scattered salinity (range from 2.73 to 26.64 wt% NaCleqv.). Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz indicate mixing of magmatic hydrothermal fluid and meteoric water (δ18OH2O SMOW = 0.2‰ to 4.2‰; δDH2O SMOW = −126‰ to −80‰). Carbon and oxygen isotopic composition of carbonate samples indicate the magmatic hydrothermal origin of CO32− or CO2 in ore-forming fluid (δ13CPDB = −6.9‰ to −5.7‰, δ18OSMOW = 11.3‰ to 12.7‰). Sulfur and lead isotopic compositions (δ34SVCDT = 8.8–14.2‰ and 206Pb/204Pb = 17.156–17.209, 207Pb/204Pb = 15.532–15.508, 208Pb/204Pb = 37.282–37.546) demonstrate that sulfur sources were relatively uniform, and low radiogenic lead isotopic compositions indicate that ore metals were derived from a relatively unradiogenic source, probably by mixing of mantle with crust. Therefore, polymetallic vein-type Zn-Pb mineralization in this area probably arose from a magmatic-related hydrothermal system, and the deposition of sulfides occurred in response to cooling and boiling of magmatic hydrothermal fluids (high salinity, high δ18OH2O and δDH2O and metal-bearing), and is mainly the result of emplacement into open space and mixing with meteoric water (low salinity, low δ18OH2O and δDH2O). This study provides direct evidence that magmatism was involved in the ore-forming processes of the low temperature metallogenic district, South China, and it raises awareness about the presence of polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen and their potential as a source of zinc, copper, indium and gallium.  相似文献   

5.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

6.
《Applied Geochemistry》2005,20(11):2017-2037
The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW–SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH4, thermogenic C2+ gases, and associated condensates were evaluated separately.Methane appears to have 3 origins: Group-1 CH4 is bacteriogenic (Calculated δ13CC1–C = −61.48‰; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH4. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 (δ13CC1–C = −35.80‰; Hamitabat Field) and Group-3 (δ13C1–C = −49.10‰; Değirmenköy Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C2+ gases. The Group-2 C2+ gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen (δ13C = −21‰) present in the Eocene deltaic Hamitabat shales. The Group-3 C2+ gases, produced from one field, were generated from isotopically light marine kerogen (δ13C = −29‰). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases.The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C2+ gases. However, it is crucial to note that condensates do not necessarily correlate to their associated gases.Maturity assessments on the Group-1 and -2 thermogenic gases based on their estimated initial kerogen isotope values (δ13C = −21‰; −29‰) and on the biomarkers present in the associated condensates reveal that all the hydrocarbons including gases, condensates and oils are the products of primary cracking at the early mature st age (Req = 0.55–0.81%). It is demonstrated that the open-system source conditions required for such an early-mature hydrocarbon expulsion exist and are supported by fault systems of the basin.  相似文献   

7.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

8.
The Ulu Sokor gold deposit is one of the most famous and largest gold deposits in Malaysia and is located in the Central Gold Belt. This deposit consists of three major orebodies that are related to NS- and NE-striking fractures within fault zones in Permian-Triassic meta-sedimentary and volcanic rocks of the East Malaya Block. The faulting events represent different episodes that are related to each orebody and are correlated well with the mineralogy and paragenesis. The gold mineralization consists of quartz-dominant vein systems with sulfides and carbonates. The hydrothermal alteration and mineralization occurred during three stages that were characterized by (I) silicification and brecciation; (II) carbonatization, sericitization, and chloritization; and (III) quartz–carbonate veins.Fluid inclusions in the hydrothermal quartz and calcite of the three stages were studied. The primary CO2–CH4–H2O–NaCl fluid inclusions in stage I are mostly related to gold mineralization and display homogenization temperatures of 269–389 °C, salinities of 2.77–11.89 wt.% NaCl equivalent, variable CO2 contents (typically 5–29 mol%), and up to 15 mol% CH4. In stage II, gold was deposited at 235–398 °C from a CO2 ± CH4–H2O–NaCl fluid with a salinity of 0.83–9.28 wt.% NaCl equivalent, variable CO2 contents (typically 5–63 mol%), and up to 4 mol% CH4. The δ18OH2O and δD values of the ore-forming fluids from the stage II quartz veins are 4.5 to 4.8‰ and − 44 to − 42‰, respectively, and indicate a metamorphic–hydrothermal origin. Oxygen fugacities calculated for the entire range of T-P-XCO2 conditions yielded log fO2 values between − 28.95 and − 36.73 for stage I and between − 28.32 and − 39.18 for stage II. These values indicate reduced conditions for these fluids, which are consistent with the mineral paragenesis, fluid inclusion compositions, and isotope values.The presence of daughter mineral-bearing aqueous inclusions is interpreted to be a magmatic signature of stage IIIa. Combined with the oxygen and hydrogen isotopic compositions (δ18OH2O = 6.8 to 11.9‰, δD =  77 to − 62‰), these inclusions indicate that the initial fluid was likely derived from a magmatic source. In stage IIIb, the gold was deposited at 263° to 347 °C from a CO2–CH4–H2O–NaCl fluid with a salinity of 5.33 to 11.05 wt.% NaCl equivalent, variable CO2 contents (typically 9–15 mol%), and little CH4. The oxygen and hydrogen isotopic compositions of this fluid (δ18OH2O = 8.1 to 8.8‰, δD =  44 to − 32‰) indicate that it was mainly derived from a metamorphic–hydrothermal source. The CO2–H2O ± CH4–NaCl fluids that were responsible for gold deposition in the stage IIIc veins had a wide range of temperatures (214–483 °C), salinities of 1.02 to 21.34 wt.% NaCl equivalent, variable CO2 contents (typically 4–53 mol%), and up to 7 mol% CH4. The oxygen and hydrogen isotopic compositions (δ18OH2O = 8.5 to 9.8‰, δD =  70 to − 58‰) were probably acquired at the site of deposition by mixing of the metamorphic–hydrothermal fluid with deep-seated magmatic water and then evolved by degassing at the site of deposition during mineralization. The log fO2 values from − 28.26 to − 35.51 also indicate reduced conditions for this fluid in stage IIIc. Moreover, this fluid had a near-neutral pH and δ34S values of H2S of − 2.32 to 0.83‰, which may reflect the derivation of sulfur from the subducted oceanic lithospheric materials.The three orebodies represent different gold transportation and precipitation models, and the conditions of ore formation are related to distinct events of hydrothermal alteration and gold mineralization. The gold mineralization of the Ulu Sokor deposit occurred in response to complex and concurrent processes involving fluid immiscibility, fluid–rock reactions, and fluid mixing. However, fluid immiscibility was the most important mechanism for gold deposition and occurred in these orebodies, which have corresponding fluid properties, structural controls, geologic characteristics, tectonic settings, and origins of the ore-forming matter. These characteristics of the Ulu Sokor deposit are consistent with its classification as an orogenic gold deposit, while some of the veins are genetically related to intrusions.  相似文献   

9.
Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.  相似文献   

10.
The Chorukh-Dairon deposit is part of the metallogenic belt of WMo, CuMo, AuW, and Au deposits along the Late Paleozoic active continental margin of the Tien Shan. It is related to the Late Carboniferous multiphase pluton, with successive intrusive phases of early monzogabbro through monzonite-quartz monzonite to monzogranite and leucogranite, and the latest lamprophyre dikes. The deposit is an example of complex W–Mo–Cu magmatic-hydrothermal system related to magnetite-series shoshonitic igneous suite. It contains zones of W–Cu–Mo oxidized prograde and retrograde skarns, with abundant scapolite, plagioclase, K-feldspar, andradite garnet, magnetite, as well as molybdoscheelite and minor chalcopyrite, and molybdenite. Skarns are overprinted by hydrosilicate alteration assemblages, with amphibole, chlorite, epidote, quartz, calcite, scapolite, albite, scheelite, and chalcopyrite, and are cut by quartz-carbonate-barite-fluorite-sulfide veins.The fluid evolution included a release of high temperature (~ 400–500 °C), high pressure (900–1100 to 700–800 bars), high salinity magmatic-hydrothermal aqueous chloride fluid, with its direct separation from crystallizing magma and formation of prograde and retrograde skarns. Fluid enrichment in Ca (up to 15–22 wt.% CaCl2) at the retrograde skarn stage was possibly related to magmatic differentiation and provided intense molybdoscheelite deposition from a homogenous fluid. In contrast, hydrosilicate alteration assemblages were formed at lower temperatures (~ 350–400 °C) initially from a homogenous and then from a boiling Ca-rich (20–22 wt.% CaCl2) magmatic-hydrothermal fluid, with the latter contributing to the most intense scheelite deposition. The stable isotope data (δ13CCO2 =  3.0 ± 0.5‰ and δ18ОH2O = + 6.5 ± 0.5‰, δ34S = + 7.5 to + 7.7‰) obtained for the hydrosilicate stage minerals suggest significant fluid sourcing from magmatic and meteoric waters as well as from sedimentary rocks enriched in seawater sulfate, possibly evaporites, although a strongly homogenous character of the isotopic composition reveals intense isotope homogenization in a magmatic chamber. Some light sulfur isotope enrichment of sulfides from the quartz-carbonate-barite-fluorite-sulfide veins (δ34S = + 6.0 to + 6.1‰) may be linked to the evolution of the magmatic source toward more mantle-related sulfur species, as these veins were formed after emplacement of the late mafic (lamprophyre) dikes.  相似文献   

11.
The study presents copper (Cu) isotope data of mineral separates of chalcopyrite from four drill core samples in the Miocene Dabu porphyry Cu-Mo deposit formed in a post-collisional setting in the Gangdese porphyry copper belt, southern Tibet. Copper isotope values in hypogene chalcopyrite range from –1.48‰ to +1.12‰, displaying a large variation of up to 2.60‰, which demonstrates Cu isotope fractionation at high-temperature during hydrothermal evolution. The majority of measured chalcopyrite isotopic compositions show a gradual increasing trend from –1.48‰ to +1.12‰ with the increase of drilling depth from 130m to 483m, as the alteration assemblages change from potassic to phyllic. Similarly, the other δ65Cu values (δ65Cu = ((65Cu/63Cu)sample/(65Cu/63Cu)standard  1) × 1000) of the chalcopyrite show a gradual increasing trend from −1.48‰ to +0.59‰ with the decrease of drilling depth from 130 m to 57 m, as the alteration assemblages change from potassic, phyllic, through argillic to relatively fresh. These observations suggest a genetic link between Cu isotope variation and silicate alteration assemblages formed at different temperatures, indicative of a Rayleigh precipitation process resulting in the large variation of δ65Cu values at Dabu. In general, samples closest to the center of hydrothermal system dominated by high-temperature potassic alteration are isotopically lighter, whereas samples dominated by low-temperature phyllic alteration peripheral to the center are isotopically heavier. The predicted flow pathways of hydrothermal fluids are from No. 0 to No. 3 exploration line, and the lightest δ65Cu values are the most proximal to the hydrothermal source. Finally, we propose that the northwest side of the No. 0 exploration line has high potential for hosting undiscovered orebodies. The pattern of Cu isotope variation in conjunction with the features of silicate alteration in porphyry system can be used to trace the hydrothermal flow direction and to guide mineral exploration.  相似文献   

12.
A new high sulfidation epithermal Cu–Au occurrence (Nadun) has been discovered adjacent to the Cretaceous Duolong porphyry Cu–Au deposit within the Bangong–Nujiang metallogenic belt, central Tibet. The Nadun Cu–Au mineralization is hosted in a tectonic–hydrothermal breccia with advanced argillic alteration, which occurs above sandstone, associated with quartz–pyrite veins. The granodiorite porphyry with strong argillic alteration yields a zircon U–Pb age of 119.1 ± 1.3 Ma, whereas the weakly argillic granodiorite porphyry intruded into the breccia has a younger age of 116.1 ± 1.3 Ma. This indicates that Cu–Au epithermal mineralization likely occurred between ~ 116 Ma and ~ 119 Ma, consistent with the duration of magmatic–hydrothermal activity at Duolong (~ 115–118 Ma), and providing evidence that Nadun and Duolong were formed during the same event. Moreover, the Nadun and Duolong porphyries have similar Hf isotopic compositions (εHf(t) values ranging from − 8.8 to 8.1; mean = 5.0 ± 1.1, n = 32), likely indicating that the deposits are comagmatic. In addition, boiling assemblages in vapor-rich inclusions coexisting with brines occur in early stage quartz–pyrite veins, and likely record phase separation at a temperature of > 550–300 °C and pressure of 700–110 bars. Most liquid-rich fluid inclusions formed at the breccia stage show similar salinity (1.7–19.3 wt.% NaCl equiv) to vapor-rich inclusions from the underlying quartz–pyrite veins, likely indicating vapor contraction during cooling at elevated presssure. This suggests that quartz–pyrite veins may act as conduits for ore-forming fluid traveling from the porphyry to the epithermal hydrothermal system. O and H isotopic compositions (δ18Ofluid = 0.42–9.71‰ and δD =  102 to − 66‰) suggest that ore-forming fluids are dominantly from a magmatic source with a minor addition of meteoric water at a later stage. The S and Fe isotope compositions of sulfides (δ34S =  5.9 to 0.5‰ and δ57Fe =  2.15 to 0.17‰) decrease from the quartz–pyrite vein to breccia ore, indicating that ore-forming fluids gradually become SO42-enriched and relatively oxidized. This body of evidence suggests that the Nadun Cu–Au mineralization may represent the root of a high sulfidation epithermal deposit.  相似文献   

13.
The Laoshankou Fe–Cu–Au deposit is located at the northern margin of Junggar Terrane, Xinjiang, China. This deposit is hosted in Middle Devonian andesitic volcanic breccias, basalts, and conglomerate-bearing basaltic volcanic breccias of the Beitashan Formation. Veined and lenticular Fe–Cu–Au orebodies are spatially and temporally related to diorite porphyries in the ore district. Wall–rock alteration is dominated by skarn (epidote, chlorite, garnet, diopside, actinolite, and tremolite), with K–feldspar, carbonate, albite, sericite, and minor quartz. On the basis of field evidence and petrographic observations, three stages of mineralization can be distinguished: (1) a prograde skarn stage; (2) a retrograde stage associated with the development of Fe mineralization; and (3) a quartz–sulfide–carbonate stage associated with Cu–Au mineralization. Electron microprobe analysis shows that garnets and pyroxenes are andradite and diopside-dominated, respectively. Fluid inclusions in garnet yield homogenization temperatures (Th) of 205–588 °C, and salinities of 8.95–17.96 wt.% NaCl equiv. In comparison, fluid inclusions in epidote and calcite yield Th of 212–498 and 150–380 °C, and salinities of 7.02–27.04 and 13.4–18.47 wt.% NaCl equiv., respectively. Garnets yield values of 6.4‰ to 8.9‰ δ18Ofluid, whereas calcites yield values of − 2.4‰ and 4.2‰ δ18Ofluid, and − 0.9‰ to 2.4‰ δ13CPDB, indicating that the ore-forming fluids were dominantly magmatic fluids in the early stage and meteoric water in the late stage. The δ34S values of sulfides range from − 2.6‰ to 5.4‰, indicating that the sulfur in the deposit was probably derived from deep-seated magmas. The diorite porphyry yields LA–MC–ICP–MS zircon U–Pb age of 379.7 ± 3.0 Ma, whereas molybdenites give Re–Os weighted mean age of 383.2 ± 4.5 Ma (MSWD = 0.06). These ages suggest that the mineralization-related diorite porphyry was emplaced during the Late Devonian, coincident with the timing of mineralization within the Laoshankou Fe–Cu–Au deposit. The geological and geochemical evidence presented here suggest that the Laoshankou Fe–Cu–Au deposit is a skarn deposit.  相似文献   

14.
The Huangshaping polymetallic deposit is located in southeastern Hunan Province, China. It is a world-class W–Mo–Pb–Zn–Cu skarn deposit in the Nanling Range Metallogenic Belt, with estimated reserves of 74.31 Mt of W–Mo ore at 0.28% WO3 and 0.07% Mo, 22.43 Mt of Pb–Zn ore at 3.6% Pb and 8.00% Zn, and 20.35 Mt of Cu ore at 1.12% Cu. The ore district is predominantly underlained by carbonate formations of the Lower Carboniferous period, with stocks of quartz porphyry, granite porphyry, and granophyre. Skarns occurred in contact zones between stocks and their carbonate wall rocks, which are spatially associated with the above-mentioned three types of ores (i.e., W–Mo, Pb–Zn, and Cu ores).Three types of fluid inclusions have been identified in the ores of the Huangshaping deposit: aqueous liquid–vapor inclusions (Type I), daughter-mineral-bearing aqueous inclusions (Type II), and H2O–CO2 inclusions (Type III). Systematic microthermometrical, laser Raman spectroscopic, and salinity analyses indicate that high-temperature and high-salinity immiscible magmatic fluid is responsible for the W–Mo mineralization, whereas low-temperature and low-salinity magmatic-meteoric mixed fluid is responsible for the subsequent Pb–Zn mineralization. Another magmatic fluid derived from deep-rooted magma is responsible for Cu mineralization.Chondrite-normalized rare earth element patterns and trace element features of calcites from W–Mo, Pb–Zn, and Cu ores are different from one another. Calcite from Cu ores is rich in heavy rare earth elements (187.4–190.5 ppm), Na (0.17%–0.19%), Bi (1.96–64.60 ppm), Y (113–135 ppm), and As (9.1–29.7 ppm), whereas calcite from W–Mo and Pb–Zn ores is rich in Mn (> 10.000 ppm) and Sr (178–248 ppm) with higher Sr/Y ratios (53.94–72.94). δ18O values also differ between W–Mo/Pb–Zn ores (δ18O = 8.10‰–8.41‰) and Cu ores (δ18O = 4.34‰–4.96‰), indicating that two sources of fluids were, respectively, involved in the W–Mo, Pb–Zn, and Cu mineralization.Sulfur isotopes from sulfides also reveal that the large variation (4‰–19‰) within the Huangshaping deposit is likely due to a magmatic sulfur source with a contribution of reduced sulfate sulfur host in the Carboniferous limestone/dolomite and more magmatic sulfur involved in the Cu mineralization than that in W–Mo and Pb–Zn mineralization. The lead isotopic data for sulfide (galena: 206Pb/204Pb = 18.48–19.19, 207/204Pb = 15.45–15.91, 208/204Pb = 38.95–39.78; sphalerite: 206Pb/204Pb = 18.54–19.03, 207/204Pb = 15.60–16.28, 208/204Pb = 38.62–40.27; molybdenite: 206Pb/204Pb = 18.45–19.21, 207/204Pb = 15.53–15.95, 208/204Pb = 38.77–39.58 chalcopyrite: 206Pb/204Pb = 18.67–19.38, 207/204Pb = 15.76–19.90, and 208/204Pb = 39.13–39.56) and oxide (scheelite: 206Pb/204Pb = 18.57–19.46, 207/204Pb = 15.71–15.77, 208/204Pb = 38.95–39.13) are different from those of the wall rock limestone (206Pb/204Pb = 18.34–18.60, 207/204Pb = 15.49–15.69, 208/204Pb = 38.57–38.88) and porphyries (206Pb/204Pb = 17.88–18.66, 207/204Pb = 15.59–15.69, 208/204Pb = 38.22–38.83), suggesting Pb206-, U238-, and Th 232-rich material are involved in the mineralization. The Sm–Nd isotopes of scheelite (εNd(t) =  6.1 to − 2.9), garnet (εNd(t) =  6.8 to − 6.1), and calcite (εNd(t) =  6.3) from W–Mo ores as well as calcite (εNd(t) =  5.4 to − 5.3) and scheelite (εNd(t) =  2.9) from the Cu ores demonstrate suggest more mantle-derived materials involved in the Cu mineralization.In the present study we conclude that two sources of ore-forming fluids were involved in production of the Huangshaping W–Mo–Pb–Zn–Cu deposit. One is associated with the granite porphyry magmas responsible for the W–Mo and then Pb–Zn mineralization during which its fluid evolved from magmatic immiscible to a magmatic–meteoritic mixing, and the other is derived from deep-rooted magma, which is related to Cu-related mineralization.  相似文献   

15.
The Yukeng–Banling deposit is a typical fault-controlled hydrothermal Cu–Au deposit in the Shanmen Volcanic Basin (SVB), SE China. Ore bodies commonly occur as lodes, lenses and disconnected pods dipping SW with vertical zonation of ore minerals. Ore-related hydrothermal alteration is well developed on both sides of the veins, dominated by silicification, sericitization, chloritization and argillation with a banded alteration zonation. The mineralization can be divided into three stages (stages I, II and III). Native gold is present as veinlets in fractures of fine-grained pyrite from stage II.Zircon U–Pb and Rb–Sr isochron ages indicate that the Cu–Au mineralization is coeval with the Caomen alkaline granite and Xiaokeng quartz-diorite, both emplaced at ca. 102 Ma. Microthermometric measurements of fluid inclusions in quartz and sphalerite from stage II veins indicate that the Yukeng–Banling deposit is an epithermal deposit. Six ore-related quartz grains have δDH2O values of − 69 to − 43‰, and δ18OH2O values calculated using total homogenization temperatures that range from − 2.0 to 0.7‰. All samples plot in an area between the magmatic field and the meteoric line, suggesting that the ore-forming fluids are derived from a mixed source of magmatic and meteoric waters. δ34S values for eight pyrite separates range from − 2.1 to + 4.1‰ with an average of + 1.7‰, and δ34S values for galena and sphalerite are 2.3‰ and 2.2‰, similar to magmatic sulfur. Four alkaline granite samples have Pb isotopic ratios (206Pb/204Pb)t = 18.175–18.411, (207Pb/204Pb)t = 15.652–15.672 and (208Pb/204Pb)t = 38.343–38.800. Three quartz-diorite samples have ratios (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t of 18.277–18.451, 15.654–15.693 and 38.673–38.846, respectively. These age-calculated lead isotopic data for alkaline granite are similar to those for the analyzed sulfides. Co/Ni ratios for stage II pyrites range from 1.42 to 5.10, indicating that the Yukeng–Banling deposit records the past involvement of magmatic hydrothermal fluids. The isotope data, together with geological, mineralogical and geochronological evidence, favor a primary magmatic source for sulfur and metals in the ore fluids. Mixing of the Cu- and Au-rich fluids with meteoric water led to precipitation of the Cu–Au veins along NW-trending faults.The Yukeng–Banling deposit, the contemporaneous Caomen alkaline granite and Xiaokeng quartz-diorite in the SVB formed under an extensional setting, due to high-angle subduction of the paleo-Pacific plate. The extensional setting facilitated the formation of Cu- and Au-rich magmas which was derived from enriched mantle and lower crust.  相似文献   

16.
The Xiaguan Ag–Pb–Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250–320 °C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+–Cl-type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280–320 MPa in the early mineralization stage to ca. 90–92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag–Pb–Zn orefield belongs to orogenic-type systems.The δ18OH2O values change from the Early (E)-stage (7.8–10.8 ‰), through Middle (M)-stage (6.0–9.4 ‰) to Late (L)-stage (− 1.5–3.3 ‰), with δD values changing from E-stage − 95 to − 46 ‰, through M-stage − 82 to − 70 ‰ to L-stage − 95 to − 82 ‰. δ13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 ‰ and 0.9 ‰ (average: 0.3 ‰); δ13CCO2 values of L-stage FIs are − 0.2–0.1 ‰ in quartz and − 6.8 ‰ to − 3.5 ‰ in calcite. The H–O–C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution.Sulfur (δ34S = 1.9–8.1 ‰) and lead isotopic compositions (206Pb/204Pb = 18.202–18.446, 207Pb/204Pb = 15.567–15.773 and 208Pb/204Pb = 38.491–39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187  124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag–Pb–Zn orefield was formed in a continent–continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF).  相似文献   

17.
Xiaolonghe is a poorly studied greisen-type tin deposit that is hosted by biotite granite in the western Yunnan tin belt. The mineralisation-related metaluminous and weak peraluminous granite is characterised by high Si, Al and K and low Mg, Fe and Ca, with an average A/CNK of 1.02. The granite is enriched in LILEs (K and Rb), LREEs and HFSEs (Zr, Hf, Th, U and Ce) and depleted in Ba, Nb, Sr, P, and Ti, with zircon εHf(t) =  10.8 to − 7.5 (TDM2 = 1.61–1.82 Ga). These characteristics indicate that the magma was generated by the partial melting of a thickened ancient crust. LA-ICP-MS U–Pb dating of igneous zircon and hydrothermal cassiterite yield ages of 71.4 ± 0.4 Ma and 71.6 ± 4.8 Ma, respectively. The igneous biotite and hydrothermal muscovite samples show Ar–Ar plateau ages of 72.3 ± 0.4 Ma and 70.6 ± 0.2 Ma, respectively. The close temporal relationship between the igneous emplacement and hydrothermal activity suggests that the tin mineralisation was closely linked to the igneous emplacement. The δ18O and δD values for the deposit range from + 3.11‰ to − 4.5‰ and from − 127.3‰ to − 94.7‰, respectively. The hydrothermal calcite C and O isotopic data show a wide range of δ13CPDB values from − 5.7‰ to − 4.4‰, and the δ18OSMOW values range from + 1.4‰ to + 11.2‰. The δ34SV-CDT data range from + 4.8‰ to + 8.9‰ for pyrite, and the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from 18.708 to 18.760, from 15.728 to 15.754 and from 39.237 to 39.341, respectively. The stable isotopic (C–H–O–S–Pb) compositions are all similar to those of magmatic and mantle-derived fluids, which indicate that the ore-forming fluids and materials were mainly derived from magmatic sources that were accompanied by meteoric water. The tin mineralisation in the Xiaolonghe district was closely associated with the Late Cretaceous crustal-melting S-type granites that formed during the subduction of the Neo-Tethys oceanic lithosphere. Combined with the tin deposits in the Southeast Asian tin belt, Tengchong block and Central Lhasa, we interpreted that a giant intermittent tin mineralisation belt should be present along the Asian Neo-Tethys margin.  相似文献   

18.
《Applied Geochemistry》2005,20(1):23-39
Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (Tmi) near zero (0 °C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (Th)  = 325 ± 5 °C. The boiling zone shows Th = ±300 °C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO2. Positive clathrate melting temperatures (fusion) with Th = 150 °C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 °C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO2 (80–98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir.The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ18O–δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ18O is due to the rock–water interaction at relatively high temperatures. δ13C stable isotope data show a magmatic source with a minor meteoric contribution for CO2. The initial isotopic value δ34SRES = −2.3‰, which implies a magmatic source. More negative values are observed for shallow pyrite and range from δ34S (FeS2) = −4‰ to −4.9‰, indicating boiling. The same fractionation tendencies are observed for fluids in the reservoir from results for δ18O.  相似文献   

19.
The Hukeng tungsten deposit, located in the Wugongshan area in central part of Jiangxi province, South China, is a large-scale quartz-vein wolframite deposit. It is hosted in the Hukeng granitic intrusion. Based on the mineral assemblage and crosscutting relationship of the veins, three mineralization stages are identified, including: (1) quartz–wolframite stage, (2) quartz–fluorite–wolframite stage, and (3) quartz–pyrite–sphalerite–wolframite stage.The homogenization temperatures of fluid inclusions in vein quartz vary from 220 to 320 °C, and the salinities are from 0 to 10 wt.% NaCl equiv.; corresponding densities range from 0.7 to 1 g/cm3. These features indicated that the ore-forming fluids in the Hukeng tungsten deposit have medium temperature, low density and low salinity.The δ18OSMOW values of quartz range from 10.8‰ to 14.4‰, with corresponding δ18Ofluid values of 3.7‰ to 7.7‰, and δD values of fluid inclusions of between ? 70‰ and ? 55‰. The combined isotopic data indicate that the ore-forming fluids of the Hukeng tungsten deposit were mainly derived from magmatic water, with some minor input from meteoric water.We have carried out molybdenite Re–Os and muscovite 40Ar/39Ar dating to constrain the timing of mineralization. Re–Os dating of six molybdenite samples yielded model ages ranging from 149.1 ± 2.0 to 150.7 ± 3.7 Ma, with an average of 150.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 150.2 ± 2.2 Ma (MSWD = 0.60). Hydrothermal muscovite yields a plateau 40Ar/39Ar age of 147.2 ± 1.4 Ma. 40Ar/39Ar age is in good agreement with the Re–Os age. These ages show that the timing of tungsten mineralization occurred at about 150 Ma. Our new data, when combined with published geochronological results from the other major deposits in this region, suggest that widespread W mineralization occurred in the Late Jurassic throughout South China.  相似文献   

20.
Copper and iron skarn deposits are economically important types of skarn deposits throughout the world, especially in China, but the differences between Cu and Fe skarn deposits are poorly constrained. The Edong ore district in southeastern Hubei Province, Middle–Lower Yangtze River metallogenic belt, China, contains numerous Fe and Cu–Fe skarn deposits. In this contribution, variations in skarn mineralogy, mineralization-related intrusions and sulfur isotope values between these Cu–Fe and Fe skarn deposits are discussed.The garnets and pyroxenes of the Cu–Fe and Fe skarn deposits in the Edong ore district share similar compositions, i.e., dominantly andradite (Ad29–100Gr0–68) and diopside (Di54–100Hd0–38), respectively. This feature indicates that the mineral compositions of skarn silicate mineral assemblages were not the critical controlling factors for variations between the Cu–Fe and Fe skarn deposits. Intrusions associated with skarn Fe deposits in the Edong ore district differ from those Cu–Fe skarn deposits in petrology, geochemistry and Sr–Nd isotope. Intrusions associated with Fe deposits have large variations in their (La/Yb)N ratios (3.84–24.6) and Eu anomalies (δEu = 0.32–1.65), and have relatively low Sr/Y ratios (4.2–44.0) and high Yb contents (1.20–11.8 ppm), as well as radiogenic Sr–Nd isotopes (εNd(t) =  12.5 to − 9.2) and (87Sr/86Sr)i = 0.7067 to 0.7086. In contrast, intrusions associated with Cu–Fe deposits are characterized by relatively high Sr/Y (35.0–81.3) and (La/Yb)N (15.0–31.6) ratios, low Yb contents (1.00–1.62 ppm) without obvious Eu anomalies (δEu = 0.67–0.97), as well as (87Sr/86Sr)i = 0.7055 to 0.7068 and εNd(t) =  7.9 to − 3.4. Geochemical evidence indicates a greater contribution from the crust in intrusions associated with Fe skarn deposits than in intrusions associated with Cu–Fe skarn deposits. In the Edong ore district, the sulfides and sulfates in the Cu–Fe skarn deposits have sulfur isotope signatures that differ from those of Fe skarn deposits. The Cu–Fe skarn deposits have a narrow range of δ34S values from − 6.2‰ to + 8.7‰ in sulfides, and + 13.2‰ to + 15.2‰ in anhydrite, while the Fe skarn deposits have a wide range of δ34S values from + 10.3‰ to + 20.0‰ in pyrite and + 18.9‰ to + 30.8‰ in anhydrite. Sulfur isotope data for anhydrite and sedimentary country rocks suggest that the formation of skarns in the Edong district involved the interaction between magmatic fluids and variable amounts of evaporites in host rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号