首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Arguments in favor of magmatic or metasomatic genesis of the Katugin rare-metal ore deposit are discussed. The geological and mineralogical features of the deposit confirm its magmatic origin: (1) the shape of the ore-bearing massif and location of various types of granites (biotite, biotite–amphibole, amphibole, and amphibole–aegirine); (2) the geochemical properties of the massif rocks corresponding to A type granite (high alkali content (up to 12.3% Na2O + K2O), extremely high FeO/MgO ratio (f = 0.96–1.00), very high content of the most incoherent elements (Rb, Li, Y, Zr, Hf, Ta, Nb, Th, U, Zn, Ga, and REE) and F, and low concentrations of Ca, Mg, Al, P, Ba, and Sr); (3) Fe–F-rich rock-forming minerals; (4) no previously proposed metasomatic zoning and regular replacement of rock-forming minerals corresponding to infiltration fronts of metasomatism. The similar ages of the barren (2066 ± 6 Ma) and ore-bearing (2055 ± 7 Ma) granites along with the features of the ore mineralization speak in favor of the origin of the ore at the magmatic stage of the massif’s evolution. The nature of the ore occurrence and the relationships between the ore minerals support their crystallization from F-rich aluminosilicate melt and also under melt liquation into aluminosilicate and fluoride (and/or aluminofluoride) fractions.  相似文献   

2.
We studied the petrography, mineralogy, and geochemistry of the Paleoproterozoic (2.06 Ga) granites of the Katugin massif (Stanovoy suture zone), which hosts the combined rare-metal Katugin deposit. Three groups of granites were distinguished: (1) biotite (Bt) and biotite–riebeckite (Bt–Rbk) granites of the western block of the massif; (2) biotite–arfvedsonite (Bt–Arf) granites of the eastern block; and (3) arfvedsonite (Arf), aegirine–arfvedsonite (Aeg–Arf), and aegirine (Aeg) granites of the eastern block. The Bt and Bt–Rbk granites of the first group are mainly metaluminous and peraluminous rocks with rather high CaO contents and the minimum F contents among the granites described here. It was suggested that the granites of this group could be derived from a source dominated by crustal rocks with a small addition of mantle materials. These granites probably crystallized from a metaluminous–peraluminous melt with elevated CaO and moderate F contents. Melts of such compositions are least favorable for the crystallization of ore minerals. The Bt–Arf granites of the second group are mainly peralkaline and show high contents of CaO and Y and low contents of Na2O and F. A mixed mantle–crust source was proposed for the Bt–Arf granites. The initial melt of the Bt–Arf granites could have a peralkaline composition with elevated CaO content and moderate to high F content. The Arf, Aeg–Arf, and Aeg granites of the third group are enriched in ore mineral and were classified as peralkaline granites with very low CaO contents, elevated Na2O and F contents, and usually very high contents of Zr, Hf, Nb, and Ta. Based on the geochemical and isotopic data, it was supposed that the source of the granites of the third group could be derivatives of basaltic magmas produced in an OIB-type source with a minor addition of crustal material to the magma generation zone. It was suggested that the primary melt of this granite group could be a peralkaline CaO-poor and F-rich silicic melt, which is most favorable for the crystallization of ore minerals. Based on the analysis of the geochemical characteristics of the three granite groups and their relationships within the Katugin massif, a qualitative model of its formation was proposed. According to this model, the Bt and Bt–Rbk granites of the western block crystallized first, followed by the Bt–Arf granites of the eastern block and, eventually, the Arf, Aeg–Arf, and Aeg granites enriched in ore minerals.  相似文献   

3.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

4.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

5.
The paper presents detailed geochemical data on the rocks of the Zashikhinsky Massif and mineralogical–geochemical characteristics of the ores of the eponymous deposit. The rare-metal granites are divided into three facies varieties on the basis of the degree of differentiation and ore potential: early facies represented by microcline–albite granites with arfvedsonite, middle facies represented by leucocratic albite–microcline granites, and late (most ore-bearing) facies represented by quartz–albite granites grading into albitites. Microprobe data were obtained on major minerals accumulating trace elements in the rocks and ores. All facies of the rare-metal granites, including the rocks of the fluorite–rare-metal vein, define single compositional trends in the plots of paired correlations of rock-forming and trace elements. In addition, they also show similar REE patterns and spidergrams. The latter, however, differ in the depth of anomalies of some elements. Obtained geological, petrographic, and geochemical data suggest a magmatic genesis of the rocks of different composition and their derivation from a single magma during its differentiation. On the basis of all characteristics, the Zashikhinskoe deposit is estimated as one of the largest tantalum rare-metal deposits of alkaline-granite type in Russia.  相似文献   

6.
This paper presents data on the age, composition, and origin of rare-metal granites and associated tin tungsten mineralization in the region of the Tigrin deposit, in the Central Sikhote-Alin' mountain range (Primor'ye). These granites were formed in two successive subphases. The porphyritic protolithionite granites constituting the upper stock belong to the first, and the zinnwaldite granites of the lower (Main) stock belong to the second. The age of the granites of the lower and upper stocks (67 and 73.2 Ma, respectively) was determined for the first time, by the Rb-Sr method. The rare-metal granites crystallized from a magma enriched in fluids, rare alkalies, and ore elements. The tin-tungsten ores of the Tigrin deposit, related to these granites, are classified as deposits of the cassiterite-quartz association, but they differ from such deposits in other regions in the extensive development of stannite, the presence of a substantial amount of varlamoffite in the zone of oxidation, and an insignificant amount of sulfides in the presence of extensive development of topaz and lithium-iron micas. Sc-W-Nb minerals were found for the first time-scandium minerals proper, scandian ixiolite, and scandian-tungsten ixiolite occurring in the form of inclusions in wolframite and cassiterite.

In the Tigrin deposit, tin mineralization of the greisen association is genetically related to the rare-metal granites, and extensive vein-veinlet ore zones in hornfels and granites are paragenetically related to them.  相似文献   

7.
云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物   总被引:4,自引:1,他引:3  
云母是花岗岩、伟晶岩中的重要造岩矿物,不仅是整个岩浆阶段的结晶产物,而且也是热液过程的参与者。作为层状硅酸盐矿物,层间或八面体位置上可容纳锂、铷铯、锡、铌钽等稀有金属。本文结合前人研究积累和作者近年来的研究成果,阐述了云母作为一个重要的稀有金属成矿标志矿物的矿物学特征。铁锂云母-锂云母是稀有金属成矿作用中重要的锂矿物,同时云母中锂含量可以反映花岗岩的分异程度。铷、铯可以置换云母层间钾,在高演化花岗岩、伟晶岩中可以形成铷、铯为主的云母(既可以是锂云母系列,也可以是黑云母系列)。黑云母是稀有金属花岗岩中一个特殊的矿物。准铝质含锡花岗岩中黑云母锡含量可达100×10~(-6),其锡含量可以指示其锡成矿能力。稀有金属花岗岩中,常见的是铌钽氧化物矿物。但是最近研究发现,黑云母中铌可以超常富集(超过1000×10~(-6)),成为稀有金属花岗岩中最重要、甚至唯一的铌矿物,形成一种以富铌黑云母为特色的新类型稀有金属花岗岩,并可能代表了一种新型的潜在铌资源。基于云母在花岗岩中的重要性和结构的特殊性,今后要利用微区成分和结构分析技术,加强对云母中稀有金属晶体化学的研究,以及进一步揭示云母对稀有金属成矿的特殊重要意义。  相似文献   

8.
The Katugin deposit of economic Ta, Nb, Zr, U, REE, Y, and cryolite (Na3AlF6) ores is located in the Kalar district of the Chita region and classified as unique in Nb, Ta, and Y reserves hosted in rare-metal alkali granite. The distribution of trace elements (including REE) in zircon was studied for ore-bearing arfvedsonite–aegirine, biotite–riebeckite rocks, and zones of late recrystallization with nodular zircon clusters. The outer rims and marginal zones of zircon grains are depleted in almost all trace elements except for hafnium as compared with cores and central zones. Compositional features of zircon cores indicate their magmatic origin and do not prove metasomatic nature of the deposit. The similar REE patterns of zircon rims and cores, as well as other attributes assume postmagmatic or metamorphic origin of the rims.  相似文献   

9.
The Homrit Akarem granitic intrusion (HAGI) outcrops near the western edge of the south Eastern Desert basement exposure in Egypt. It is a composite of two cogenetic intrusive bodies: an early albite granite phase shallowly emplaced at the apex of a magmatic cupola, and a later subjacent pink granite phase with a marginal zone of muscovite granite and better preservation of magmatic features. Mineral chemistry of primary biotite and garnet, together with whole-rock chemistry, identify the HAGI as a highly fractionated A-type peraluminous intrusion. The chemistry of F-dominant, Li-bearing, Fe3+-rich primary magmatic mica in the pink granite resembles that typically found in highly evolved Nb-Y-F pegmatites. The HAGI is the evolved product of a primary magma generated by partial melting of juvenile crust of the Arabian-Nubian Shield (ANS), emplaced along a regional strike-slip fault system that promoted its ascent. The main emplacement mechanism and evolutionary sequence of the HAGI was magmatic, although secondary minerals and textures resulting from hydrothermal fluid interactions are observed, especially at its margins. Primary columbite-(Mn) crystallized from melt and was partly replaced by secondary fluorcalciomicrolite. The high fluorine content of magmatic fluids exsolved from the intrusion is indicated by quartz-fluorite veins, greisenization, albitization, and F-bearing secondary oxide minerals. The magmatic derivation of this fluid is demonstrated by the F-dominant primary mica, a siderophyllite-polylithionite solid solution commonly known as zinnwaldite. The chemistry of zinnwaldite constrains the F/OH activity ratio and oxygen fugacity of its parental melt and thereby resolves the ambiguity between pressure and the effects of F in controlling the normative quartz content of rare-metal granites. The HAGI is less mineralized than the post-collisional rare-metal granites found further east in the south Eastern Desert, replicating a trend observed previously in the central Eastern Desert and suggesting that east-west zoning in rare metal enrichment is a persistent feature across latitudes at the western edge of the ANS.  相似文献   

10.
The most important tin mineralization in Thailand is associated with the Late Cretaceous to Middle Tertiary western Thai granite belt. A variety of deposit types are present, in particular pegmatite, vein and greisen styles of mineralization. A feature common to most of the deposits is that they are associated with granites that were emplaced into the Khang Krachan Group, which consists of poorly sorted, carbonaceous, pelitic metasediments. Most of the deposits contain low to moderately saline aqueous fluid inclusions and aqueous-carbonic inclusions with variable CH4/CO2 ratios. Low salinity aqueous inclusions represent trapped magmatic fluid in at least one case, the Nong Sua pegmatite, based on their occurrence as primary inclusions in magmatic garnet. Aqueous-carbonic inclusions are commonly secondary and neither the CO2 nor NaCl contents of these inclusions decrease in progressively younger inclusions, implying that they are not magmatic in origin. Reduced carbon is depleted in the metasediments adjacent to granites and the δD values greisen muscovites are variable, but are as low as −134 per mil, indicative of fluid interaction with organic (graphitic) material. This suggests that the aqueous-carbonic fluid inclusions represent fluids that were produced, at least in part, during contact metamorphism-metasomatism. By comparing the western Thai belt with other Sn-W provinces it is evident that there is a strong correlation between fluid composition and pressure in general. Low to moderately saline aqueous inclusions and aqueous-carbonic inclusions are characteristic of mineralization associated with relatively deep plutonic belts. Mineralized pegmatites are also typically of deeper plutonic belts, and pegmatite-hosted deposits may contain cassiterite that is magmatic (crystallized from granitic melt) or is orthomagmatic-hydrothermal (crystallized from aqueous or aqueous-carbonic fluids) in origin. The magmatic aqueous fluids (those that were exsolved from granitic melts) are interpreted to have had low salinities. As a consequence of the low salinities, tin is partitioned in favour of the melt on vapour saturation. Thus with a high enough degree of fractionation, the crystallization of a magmatic cassiterite (or different Sn phase such as wodginite) is inevitable. Because tin is not partitioned in favour of the vapour phase upon water saturation of the granitic melts, it is proposed that relatively deep vein and greisen systems tend to form by remobilization processes. In addition, many deeper greisen systems are hosted, in part, by carbonaceous pelitic metasediments and the reduced nature of the metasediments may play a key role in remobilizing tin. Sub-volcanic systems by contrast are characterized by high temperature-high salinity fluids. Owing to the high chlorinity, tin is strongly partitioned in favour of the vapour and cassiterite mineralization can form by of orthomagmatic-hydrothermal processes. Similar relationships between the depth of emplacement and fluid composition also appear to apply to other types of granite-hosted deposits, such as different types of molybdenum deposits. Received: 8 September 1997 / Accepted: 28 October 1997  相似文献   

11.
The U-Pb age of the manganotantalite from rare-metal pegmatites of the Vishnyakovskoe deposit (East Sayan Belt) has been assessed at 1838 ± 3 Ma. The acquired data indicate the pegmatites of this deposit and associated granites of the Sayan complex belong to the postcollision South Siberian igneous belt (1.88–1.84 Ga), which stretches along the southwestern frame of the Siberian Craton by more than 2500 km, from the Yenisei Ridge to the Aldan Shield. Formation of this igneous belt is related to joining (starting from about 1.9 Ga BP) of the series of continental microplates and island arcs to the Siberian Craton; this led to final stabilization of the craton at about 1.8 Ga BP.  相似文献   

12.
The bimodal association of the Noen and Tost ranges is ascribed to the Gobi-Tien Shan rift zone and was formed 318 Ma ago at the continental margin of the North Asian paleocontinent. It is made up of volcanic series of alternating basalts and peralkaline rhyolites with subordinate trachytes, dike belts, and massifs of peralkaline granites. The association also includes a coeval massif of biotite granites. Based on Al2O3 and FeOtot contents, the peralkaline rhyolites are subdivided into comendites (FeOtot 1.5–5.7 wt %, Al2O3 10.5–15.4 wt %) and pantellerites (FeOtot 5.2–7.5 wt %, Al2O3 9.1–10.2 wt %). The peralkaline salic rocks of the bimodal association were formed by the crystallization differentiation of rift basaltic magmas combined with crustal assimilation. The comendites, pantellerites, and peralkaline granites inherited negative Nb and Ta and positive K and Pb anomalies from basalts. They are also similar to basalts in Nd isotope composition (?Nd(T) = 5.5–7.4) and have nearly mantle oxygen isotope composition (δ18O = 5.9–7.3‰). The most differentiated and least contaminated rocks of the bimodal series of the Noen and Tost ranges are pantellerites. Calculations indicate that the fraction of the residual pantellerite melt was 8% or less of the parental basaltic magma. The comendites were derived from peralkaline salic melts by the assimilation of anatectic crustal melts compositionally similar to biotite granites. The formation of the latter within the Noen and Tost ranges is explained by the specific geodynamic position of the Gobi-Tien Shan rift zone, which was formed near a paleocontinental margin that evolved in an active margin regime shortly before the beginning of rifting.  相似文献   

13.
We studied the geologic position, geodynamic setting, petrology, and geochemistry of veined lepidolitic granitoids from the Mungutiyn Tsagaan Durulj (MTD) occurrence (central Mongolia), found within the area of Mesozoic intraplate rare-metal magmatism. It has been established that their trace-element enrichment resulted from the intense effect of fluids rich in F, K, Li, Rb, Cs, Sn, Be, and W, which arrived from a deep magma chamber of rare-metal granitic melts, on leucogranites with originally weak rare-metal mineralization. Very high contents of F, rare alkali metals, Sn, Be, and W, characteristic of MTD granitoids, are close only to those in greisens of rare-metal granites and topaz-lepidolite-albitic pegmatites. The difference from the greisens in each case might be due to the features of the original rocks. The difference between the greisenized MTD leucogranites and the topaz-lepidolite-albitic pegmatites is more radical: Along with evident petrographic distinctions, it includes an evolution trend toward the albite norm decrease, not typical of Li–F igneous rocks; rock shearing and gneissosity, which must have contributed to their chemical transformation according to this trend; and stably lower contents of Nb and Ta (trace elements which usually accumulate during crystallization fractionation of F–Li granitic melts and are poorly soluble in magmatic fluids). The greisenized MTD granitoids are not only high-grade rare-metal ores of Li, Rb, F, and Sn but are also regarded as an indicator of a deep concealed pluton of rare-metal granites.  相似文献   

14.
The Zr/Hf ratio as a fractionation indicator of rare-metal granites   总被引:1,自引:0,他引:1  
The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites. It was empirically determined that the fractional crystallization of granitic magma according to the scheme granodiorite → biotite granite → leucogranite → Li-F granite is associated with a decrease in the Zr/Hf ratio of the granites. The reason for this is the stronger affinity of Hf than Zr to granitic melt. This was confirmed by experiments on Zr and Hf distribution between granitic melt and crystals of Hf-bearing zircon (T = 800°C, P= 1 kbar). The application of the Zr/Hf indicator was tested at three classic territories of rare-metal granites: eastern Transbaikalia, central Kazakhstan, and the Erzgebirge in the Czech Republic and Germany. The reference Kukul’bei complex of rare-metal granites in eastern Transbaikalia (J3) is characterized by a uniquely high degree of fractionation of the parental granitic melt, with the granites and their vein derivatives forming three intrusive phases. The biotite granites of phase 1 are barren, the leucogranites of phase 2 are accompanied by greisen Sn-W mineral deposits (Spokoininskoe and others), and the final dome-shaped stocks of amazonite Li-F granites of phase 3 host (in their upper parts) Ta deposits of the “apogranite” type: Orlovka, Etyka, and Achikan. The Kukul’bei Complex includes also dikes of ongonites, elvanes, amazonite granites, and miarolitic pegmatites. All granitic rocks of the complex are roughly coeval and have an age of 142±0.6 Ma. The Zr/Hf ratio of the rocks systematically decreases from intrusive phase 1 (40–25) to phases 2 (20–30) and 3 (10–2). Compared to other granite series, the granites of the Kukul’bei Complex are enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but are depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From earlier to later intrusive phases, the rocks become progressively more strongly enriched or depleted in these elements, and their Zr/Hf ratio systematically decreases from 40 to 2. This ratio serves as a reliable indicator of genetic links, degree of fractionation, and rare-metal potential of granites. Greisen Sn, W, Mo, and Be deposits are expected to accompany granites with Zr/Hf < 25, whereas granites related to Ta deposits should have Zr/Hf < 5.  相似文献   

15.
《Earth》1999,45(3-4):145-165
Ammonium is present as a trace constituent in all granites, with an average concentration of 45 ppm (NH4+), equivalent to 35 ppm of elemental N. It shows wide variations related to petrography and region, but the only significant correlation between ammonium and other geochemical parameters is that it is most abundant in peraluminous granites and least abundant in peralkaline granites. These variations can be related to (a) the amount of sedimentary material in the magmatic source region, and (b) redox conditions in the source region. The ammonium content of granitic magmas can also be modified by fractionation or contamination. Hydrothermal alteration has a major effect on the ammonium content of granitic rocks, and variation due to this cause may exceed the magmatic variation. Most hydrothermally altered granites are enriched in ammonium as a result of the transfer of ammonium from sedimentary country rocks by the hydrothermal fluids.  相似文献   

16.
New trace element data were obtained by ICP-MS for 58 samples representing eight intrusive phases of the Raumid granite Pluton. All of the rocks, except for one sample that was deliberately taken from a greisenized zone, were not affected by postmagmatic fluid alteration. The sequential accumulation of incompatible trace elements (Rb, Ta, Nb, Pb, U, and others) in the Raumid Pluton from the early to late phases coupled with a decrease in incompatible element contents (Sr, Eu, Ba, and others) indicates a genetic link between the granites of all phases via fractional crystallization of a granite melt. The REE distribution patterns of final granite phases are typical of rare-metal granites. The Ta content in the granites of phase 8 is only slightly lower than that of typical rare-metal granites. Greisenization disturbed the systematic variations in trace element distribution formed during the magmatic stage. The ranges of trace element contents (Rb, Sr, Ta, Nb, and others) and ratios (Rb/Sr, La/Lu, Eu/Eu*, and others) in the Raumid granite overlap almost entirely the ranges of granitic rocks of various compositions, from the least differentiated with ordinary trace element contents to rare-metal granites. This indicates that the geochemical signature of rare-metal granites can develop at the magmatic stage owing to fractional crystallization of melts, which is the case for the melt of the Raumid granite.  相似文献   

17.
钨矿往往与酸性或中酸性侵入岩相关,对于复式岩体通常仅与某一特定期次岩浆相关,如何确定成矿相关岩体是找矿勘查的一道难题。朱溪矽卡岩型钨矿床位于江南古陆钨矿带,是一个世界级钨矿床。该矿床的形成主要与黑云母二长花岗岩和细粒花岗岩密切相关,此次研究发现黑云母二长花岗岩中的黑云母发生蚀变、分解过程中形成了大量含W金红石(w(WO_3)为0.01%~0.96%)。这类含W次生金红石同样出现在华南地区多个钨矿床的成矿相关岩体中,并且其WO_3含量显著高于与岩浆作用相关的锡矿床和斑岩型铜(金)矿床中的次生金红石的WO_3含量。此外,朱溪矿床中岩浆演化晚期形成的细粒花岗岩中结晶了一些自形板状的原生金红石,这些金红石同样显著富集W元素(w(WO_3)为0.06%~1.12%)。金红石中的Ti容易被W所替代,导致(岩浆)热液体系所经历的W元素富集过程会被结晶的金红石所记录。因此,通过花岗质岩体中黑云母发生蚀变或分解后形成的次生金红石,或岩浆演化晚阶段形成的细晶岩脉中的原生金红石的W元素含量,可以判断岩浆结晶演化过程中是否经历过W元素的富集及相应的富集程度,从而判断花岗质岩体是否具备形成钨矿床的潜力。  相似文献   

18.
《China Geology》2019,2(4):422-438
The U-Th-REE-Nb (Ta)-polymetallic mineralization is generally related to either the silica-undersaturated syenites, the silica-oversaturated alkaline/peralkaline granites or igneous carbonatites. In this study, the authors report a new mineralization type, which is related to the magmatic-hydrothermal albitite (with mineral assemblage predominated by albite with volume content > 90%), as exemplified by the Chachaxiangka deposit in Qinghai Province of China. The Chachaxiangka deposit is the first albitite-related U-Th-REE-Nb deposit recognized in China and the mineralization can be divided into 3 types: the vein-type, the disseminated veinlet type and breccia type, of which the former 2 are predominant. Three mineralization stages can be identified according to the detailed mineralogical analyses, including the magmatic stage, main hydrothermal mineralization stage and post-ore stage. By comprehensive analyses of the mineralogical, major and trace element compositions, the authors suggest that the albitite vein is magmatic-hydrothermal in origin and both the magmatic evolution and overprint of the hydrothermal fluids play important roles in the formation of the albitite and related polymetallic mineralization. Phase separation between the silicate melt and carbonate/phosphate melt might take place in the magmatic stage, yet the immiscibility between the silicate melt and chloride-dominated fluids is the most important mechanism for the REE mineralization and also causes the Nb-Th re-mobilization and enrichment. The red color of the albitite aplite vein is an eye-catching prospecting mark in the field and more mineralization can be expected at depth and in the surrounding areas. The discovery of the new albitite type U-Th-REE-Nb mineralization give rise to new ideas during future U-Th-REE-Nb exploration, not only in the Qaidam-Altun belt, but also other areas across China.  相似文献   

19.
The data obtained on melt and fluid inclusions in minerals of granites, metasomatic rocks, and veins with tin ore mineralization at the Industrial’noe deposit in the southern part of the Omsukchan trough, northeastern Russia, indicate that the melt from which the quartz of the granites crystallized contained globules of salt melts. Silicate melt inclusions were used to determine the principal parameters of the magmatic melts that formed the granites, which had temperatures at 760–1020°C, were under pressures of 0.3–3.6 kbar, and had densities of 2.11–2.60 g/cm3 and water concentrations of 1.7–7.0 wt %. The results obtained on the fluid inclusions testify that the parameters of the mineral-forming fluids broadly varied and corresponded to temperatures at 920–275°C, pressures 0.1–3.1 kbar, densities of 0.70–1.90 g/cm3, and salinities of 4.0–75.0 wt % equiv. NaCl. Electron microprobe analyses of the glasses of twelve homogenized inclusions show concentrations of major components typical of an acid magmatic melt (wt %, average): 73.2% SiO2, 15.3% Al2O3, 1.3% FeO, 0.6% CaO, 3.1% Na2O, and 4.5% K2O at elevated concentrations of Cl (up to 0.51 wt %, average 0.31 wt %). The concentrations and distribution of some elements (Cl, K, Ca, Mn, Fe, Cu, Zn, Pb, As, Br, Rb, Sr, and Sn) in polyphase salt globules in quartz from both the granites and a mineralized miarolitic cavity in granite were assayed by micro-PIXE (proton-induced X-ray emission). Analyses of eight salt globules in quartz from the granites point to high concentrations (average, wt %) of Cl (27.5), Fe (9.7), Cu (7.2), Mn (1.1), Zn (0.66), Pb (0.37) and (average, ppm) As (2020), Rb (1850), Sr (1090), and Br (990). The salt globules in the miarolitic quartz are rich in (average of 29 globules, wt %) Cl (25.0), Fe (5.4), Mn (1.0), Zn (0.50), Pb (0.24) and (ppm) Rb (810), Sn (540), and Br (470). The synthesis of all data obtained on melt and fluid inclusions in minerals from the Industrial’noe deposit suggest that the genesis of the tin ore mineralization was related to the crystallization of acid magmatic melts. Original Russian Text@ V.B. Naumov, V.S. Kamenetsky, 2006, published in Geokhimiya, 2006, No. 12, pp. 1279–1289.  相似文献   

20.
The tungsten distribution in rocks of the Kukulbei Complex in eastern Transbaikal region results in a high potential of rare-metal peraluminous granites (RPG) for W mineralization and displays a different behavior of W in Li–F and “standard” RPG. These subtypes differ in the behavior of W in melt, spatial localization of mineralization, and the timing of wolframite crystallization relative to the age of the parental granitic rocks. The significant of W concentration is assumed to be due to fractionation of the Li–F melt; however, wolframite mineralization in Li–F enriched granite is not typical in nature. The results of experiments and our calculations of W solubility in granitic melt show that wolframite hardly ever crystallizes directly from melt; it likely migrates in the fluid phase and is then removes from the magma chamber to the host rocks, where secondary concentration takes place in exocontact greisens and quartz–cassiterite–wolframite veins. At the same time, the isotopic age of accessory wolframite (139.5 ± 2.1 Ma) within the Orlovka massif of Li–F granite is close to the formation age of the massif (140.6 ± 2.9 Ma). A different W behavior is recorded in the RPG subtype with a low lithium and fluorine concentration, exemplified by the Spokoininsky massif. There is no significant W gain in the melt. All varieties of wolframite mineralization in the Spokoininsky massif are derived from greisens, veins, and pegmatoids yielding the same crystallization ages (139.5 ± 1.1 Ma), which are 0.9–1.8 Ma later (taking into account the mean-square weighted deviation) than the Spokoininsky granite formation (144.5 ± 1.4 Ma). Perhaps this period corresponds to the time of transition from the magmatic stage to hydrothermal alteration. Comparison of the isotope characteristics (Rb–Sr and Sm–Nd isotope systems) of rocks and the associated ore minerals (wolframite, cassiterite) from all examined deposits shows a depletion in εNd values for ore minerals relative to the rock and the opposite behavior for the intial Sr isotope ratios. This may indicate the specific nature of ore matter, where the effect of the juvenile component is definitely expressed. Our geochronological results show that tantalum and tungsten mineralization took place within a narrow age interval, almost synchronously with the crystallization of associated granites. The coeval development of peraluminous magmatism enriched in lithophile rare elements and volatiles with ore complexes located in different structural settings and separated by a considerable distance from each other (up to 500 km) suggests a regional and deep-seated magma source. Rifting and increased thermal flux from the mantle, manifestations of which have been recorded during this period in the territory, may be a deep-seated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号