首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Emarat deposit, with a total proved reserve of 10 Mt ore grading 6% Zn and 2.26% Pb, is one of the largest Zn–Pb deposits in the Malayer–Esfahan belt. The mineralization is stratabound and restricted to Early Cretaceous limestones and dolomites. The ore consists mainly of sphalerite and galena with small amounts of pyrite, chalcopyrite, calcite, quartz, and dolomite. Textural evidence shows that the ore has replaced the host rocks and thus is epigenetic.Sulfur isotopes indicate that the sulfur in sphalerite and galena has been derived from Cretaceous seawater through thermochemical sulfate reduction. Sulfur isotope compositions of four apparently coprecipitated sphalerite–galena pairs suggest their precipitation was under equilibrium conditions. The sulfur isotopic fractionation observed for the sphalerite–galena pairs corresponds to formation temperatures between 77 °C and 168 °C, which agree with homogenization temperatures of fluid inclusions.Lead-isotope studies indicate that the lead in galena has been derived from heterogeneous sources including orogenic and crustal reservoirs with high 238U/204Pb and 232Th/204Pb ratios. Ages derived from the Pb-isotope model give meaningless ages, ranging from Early Carboniferous to future. It is probable that the Pb-isotope model ages that point to an earlier origin than the Early Cretaceous host rocks are derived from older reservoirs in the underlying Carboniferous or Jurassic units, either from the host rocks or from earlier-formed ore deposits within these units.This research and other available data show that the Emarat Zn–Pb deposit has many important features of Mississippi Valley-type (MVT) lead–zinc deposits and thus we argue that it is an MVT-type ore deposit.  相似文献   

2.
The Rubian magnesite deposit (West Asturian—Leonese Zone, Iberian Variscan belt) is hosted by a 100-m-thick folded and metamorphosed Lower Cambrian carbonate/siliciclastic metasedimentary sequence—the Cándana Limestone Formation. It comprises upper (20-m thickness) and lower (17-m thickness) lens-shaped ore bodies separated by 55 m of slates and micaceous schists. The main (lower) magnesite ore body comprises a package of magnesite beds with dolomite-rich intercalations, sandwiched between slates and micaceous schists. In the upper ore body, the magnesite beds are thinner (centimetre scale mainly) and occur between slate beds. Mafic dolerite dykes intrude the mineralisation. The mineralisation passes eastwards into sequence of bedded dolostone (Buxan) and laminated to banded calcitic marble (Mao). These show significant Variscan extensional shearing or fold-related deformation, whereas neither Rubian dolomite nor magnesite show evidence of tectonic disturbance. This suggests that the dolomitisation and magnesite formation postdate the main Variscan deformation. In addition, the morphology of magnesite crystals and primary fluid inclusions indicate that magnesite is a neoformed hydrothermal mineral. Magnesite contains irregularly distributed dolomite inclusions (<50 μm) and these are interpreted as relics of a metasomatically replaced dolostone precursor. The total rare earth element (REE) contents of magnesite are very similar to those of Buxan dolostone but are depleted in light rare earth elements (LREE); heavy rare earth element concentrations are comparable. However, magnesite REE chondrite normalised profiles lack any characteristic anomaly indicative of marine environment. Compared with Mao calcite, magnesite is distinct in terms of both REE concentrations and patterns. Fluid inclusion studies show that the mineralising fluids were MgCl2–NaCl–CaCl2–H2O aqueous brines exhibiting highly variable salinities (3.3 to 29.5 wt.% salts). This may be the result of a combination of fluid mixing, migration of pulses of variable-salinity brines and/or local dissolution and replacement processes of the host dolostone. Fluid inclusion data and comparison with other N Iberian dolostone-hosted metasomatic deposits suggest that Rubian magnesite probably formed at temperatures between 160 and 200°C. This corresponds, at hydrostatic pressure (500 bar), to a depth of formation of ~~5 km. Mineralisation-related Rubian dolomite yields δ 18O values (δ 18O: 12.0–15.4‰, mean: 14.4±1.1‰) depleted by around 5‰ compared with barren Buxan dolomite (δ 18O: 17.1–20.2‰, mean: 19.4±1.0‰). This was interpreted to reflect an influx of 18O-depleted waters accompanied by a temperature increase in a fluid-dominated system. Overlapping calculated δ 18Ofluid values (~+5‰ at 200°C) for fluids in equilibrium with Rubian dolomite and magnesite show that they were formed by the same hydrothermal system at different temperatures. In terms of δ 13C values, Rubian dolomite (δ 13C: −1.4 to 1.9‰, mean: 0.4±1.3‰) and magnesite (δ 13C: −2.3 to 2.4‰, mean: 0.60±1.0‰) generally exhibit more negative δ 13C values compared with Buxan dolomite (δ 13C: −0.2 to 1.9‰, mean: 0.8±0.6‰) and Mao calcite (δ 13C: −0.3 to 1.5‰, mean: 0.6±0.6‰), indicating progressive modification to lower δ 13C values through interaction with hydrothermal fluids. 87Sr/86Sr ratios, calculated at 290 Ma, vary from 0.70849 to 0.70976 for the Mao calcite and from 0.70538 to 0.70880 for the Buxan dolostone. The 87Sr/86Sr ratios in Rubian magnesite are more radiogenic and range from 0.71123 to 0.71494. The combined δ 18O–δ 13C and 87Sr/86Sr data indicate that the magnesite-related fluids were modified basinal brines that have reacted and equilibrated with intercalated siliciclastic rocks. Magnesite formation is genetically linked to regional hydrothermal dolomitisation associated with lithospheric delamination, late-Variscan high heat flow and extensional tectonics in the NW Iberian Belt. A comparison with genetic models for the Puebla de Lillo talc deposits suggests that the formation of hydrothermal replacive magnesite at Rubian resulted from a metasomatic column with magnesite forming at higher fluid/rock ratios than dolomite. In this study, magnesite generation took place via the local reaction of hydrothermal dolostone with the same hydrothermal fluids in very high permeability zones at high fluid/rock ratios (e.g. faults). It was also possibly aided by additional heat from intrusive dykes or sub-cropping igneous bodies. This would locally raise isotherms enabling a transition from the dolomite stability field to that of magnesite.Editorial handling: F. Tornos  相似文献   

3.
The Pering deposit is the prime example of Zn–Pb mineralisation hosted by stromatolitic dolostones of the Neoarchean to Paleoproterozoic Transvaal Supergroup. The hydrothermal deposit centers on subvertical breccia pipes that crosscut stromatolitic dolostones of the Reivilo Formation, the lowermost portion of the Campbellrand Subgroup. Four distinct stages of hydrothermal mineralisation are recognised. Early pyritic rock matrix brecciation is followed by collomorphous sphalerite mineralisation with replacive character, which, in turn, is succeeded by coarse grained open-space-infill of sphalerite, galena, sparry dolomite, and quartz. Together, the latter two stages account for ore-grade Zn–Pb mineralisation. The fourth and final paragenetic stage is characterised by open-space-infill by coarse sparry calcite. The present study documents the results of a detailed geochemical study of the Pering deposit, including fluid inclusion microthermometry, fluid chemistry and stable isotope geochemistry of sulphides (δ34S) and carbonate gangue (δ13C and δ18O). Microthermometric fluid inclusion studies carried out on a series of coarsely grained crystalline quartz and sphalerite samples of the latter, open-space-infill stage of the main mineralisation event reveal the presence of three major fluid types: (1) a halite–saturated aqueous fluid H2O–NaCl–CaCl2 (>33 wt% NaCl equivalent) brine, (2) low-salinity meteoric fluid (<7 wt% NaCl) and (3) a carbonic CH4–CO2–HS fluid that may be derived from organic material present within the host dolostone. Mixing of these fluids have given rise to variable mixtures (H2O–CaCl2–NaCl ±(CH4–CO2–HS), 2 to 25 wt% NaCl+CaCl2). Heterogeneous trapping of the aqueous and carbonic fluids occurred under conditions of immiscibility. Fluid temperature and pressure conditions during mineralisation are determined to be 200–210°C and 1.1–1.4 kbar, corresponding to a depth of mineralisation of 4.1–5.2 km. Chemical analyses of the brine inclusions show them to be dominated by Na and Cl with lesser amounts of Ca, K and SO4. Fluid ratios of Cl/Br indicate that they originated as halite saturated seawater brines that mixed with lower salinity fluids. Analyses of individual brine inclusions document high concentrations of Zn and Pb (∼1,500 and ∼200 ppm respectively) and identify the brine as responsible for the introduction of base metals. Stable isotope data were acquired for host rock and hydrothermal carbonates (dolomite, calcite) and sulphides (pyrite, sphalerite, galena and chalcopyrite). The ore-forming sulphides show a trend to 34S enrichment from pyrite nodules in the pyritic rock matrix breccia (δ34S = −9.9 to +3.7‰) to paragenetically late chalcopyrite of the main mineralisation event (δ34S = +30.0‰). The observed trend is attributed to Rayleigh fractionation during the complete reduction of sulphate in a restricted reservoir by thermochemical sulphate reduction, and incremental precipitation of the generated sulphide. The initial sulphate reservoir is expected to have had an isotopic signature around 0‰, and may well represent magmatic sulphur, oxidised and leached by the metal-bearing brine. The δ18O values of successive generations of dolomite, from host dolostone to paragenetically late saddle dolomite follow a consistent trend that yields convincing evidence for extensive water rock interaction at variable fluid–rock ratios. Values of δ13C remain virtually unchanged and similar to the host dolostone, thus suggesting insignificant influx of CO2 during the early and main stages of mineralisation. On the other hand, δ13C and δ18O of post-ore calcite define two distinct clusters that may be attributed to changes in the relative abundance in CH4 and CO2 during waning stages of hydrothermal fluid flow.  相似文献   

4.
The Chadormalu is one of the largest known iron deposits in the Bafq metallogenic province in the Kashmar-Kerman belt, Central Iran. The deposit is hosted in Precambrian-Cambrian igneous rocks, represented by rhyolite, rhyodacite, granite, diorite, and diabasic dikes, as well as metamorphic rocks consisting of various schists. The host rocks experienced Na (albite), calcic (actinolite), and potassic (K-feldspar and biotite) hydrothermal alteration associated with the formation of magnetite–(apatite) bodies, which are characteristic of iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) systems. Iron ores, occurring as massive-type and vein-type bodies, consist of three main generations of magnetite, including primary, secondary, and recrystallized, which are chemically different. Apatite occurs as scattered irregular veinlets in various parts of the main massive ore-body, as well as apatite-magnetite veins and disseminated apatite grains in marginal parts of the deposit and in the immediate wall rocks. Minor pyrite occurs as a late phase in the iron ores. Chemical composition of magnetite is representative of an IOA or Kiruna-type deposit, which is consistent with other evidence.Whole rock geochemical data from various host rocks confirm the occurrence of Na, Ca, and K alteration consistent with the formation of albite, actinolite, and K-feldspar, respectively. The geochemical investigation also includes the nature of calc-alkaline igneous rocks, and helps elaborating on the spatial and temporal association, and possible contribution of mafic to felsic magmas to the evolution of ore-bearing hydrothermal fluids.Fluid inclusion studies on apatites from massive- and vein-type ores show a range of homogenization temperatures from 266 to 580 °C and 208–406 °C, and salinities from 0.5 to 10.7 wt.% and 0.3–24.4 wt.% NaCl equiv., respectively. The fluid inclusion data suggest the involvement of evolving fluids, from low salinity-high temperature, to high salinity-low temperature, in the formation of the massive- and vein-type ores, respectively. The δ34S values obtained for pyrite from various parts of the deposit range between +8.9 and +14.4‰ for massive ore and +18.7 to +21.5‰ for vein-type ore. A possible source of sulfur for the 34S-enriched pyrite would be originated from late Precambrian-early Cambrian marine sulfate, or fluids equilibrated with evaporitic sulfates.Field observations, ore mineral and alteration assemblages, coupled with lithogeochemical, fluid inclusion, and sulfur isotopic data suggest that an evolving fluid from magmatic dominated to surficial brine-rich fluid has contributed to the formation of the Chadormalu deposit. In the first stages of mineralization, magmatic derived fluids had a dominant role in the formation of the massive-type ores, whereas a later brine with higher δ34S contributed to the formation of the vein-type ores.  相似文献   

5.
The Sorkhe-Dizaj orebody is located 32 km southeast of Zanjan within the Tarom subzone of the Alborz-Azarbaijan structural zone. It is hosted mainly in quartz monzonite-monzodiorite and, to a lesser extent, in volcanoclastic rocks. Mineralization occurs in the form of stockwork and veins, comprising predominantly magnetite and actinolite, with minor pyrite and chalcopyrite. Two generations of magnetite and apatite are inferred: the first as disseminations in the host rock and the second mainly as an alteration product of actinolite, secondary K-feldspar, silica, sericite, chlorite and epidote. Fluid inclusion studies were carried out on second-generation apatite, and late-stage quartz to understand the geochemical evolution of the ore-bearing fluids. Fluid inclusions are of three types, i.e. primary, secondary, and pseudo-secondary. These inclusions are liquid or vapour single-phase, two-phase rich in liquid or vapour, and three-phase. Homogenization temperatures of second-generation apatite are inferred to be between 209°C and 520°C (mostly between 290°C and 320°C), indicating salinities of 9.08–21.61 wt.% NaCl equiv. At 342°C, the δ18O values range from 9‰ to 11.32‰ for the second-generation magnetite associated with coeval apatite. Fluid inclusions in the late-stage quartz veins are inferred to have homogenized between 186°C and 263°C, with δ18O values ranging between 2.5‰ and 7.4‰ at 220°C. Oxygen isotopes in the late-stage carbonate veins have values of 3.28–6.14‰ at 100°C. These data in the late-stage veins imply introduction of a cooler, less saline, isotopically depleted fluid, probably meteoric water. Field observations, mineral parageneses, and fluid inclusion?+?oxygen isotope data suggest that the magnetite-apatite veins formed from a predominantly magmatic-derived fluid. Introduction of cooler meteoric water in the final stage of mineralization reduced δ18O values, facilitating precipitation of sulphides, quartz, and carbonate veins.  相似文献   

6.
The Qaleh-Zari copper deposit, located in South Khorasan in the Central Lut region of Iran, is a polymetallic vein deposit with major amounts of Cu, Au, Ag and minor amounts of Pb, Zn and Bi. Mineralization occurs in a series of NW–SE trending fault planes and breccia zones in Paleogene andesitic to basaltic volcanic rocks. Argillization, sericitization and propylitization characterize alteration halos bordering mineral veins. The main ore minerals are chalcopyrite, pyrite, galena and sphalerite, with quartz, calcite and minor chlorite as the main gangue phases. Microthermometric measurements of fluid inclusions in cogenetic quartz indicate homogenization temperatures between 160 and 300 °C and salinities from 1 to 4 wt% NaCl equiv. Boiling occurred in the mineralising fluids at 160–1000 m below the paleo-water table at pressures of approximately 15−80 bar at various stages in the formation of the ore body. The wide range of pressures and temperatures reflects the multi-stage nature of the mineralization at Qaleh-Zari. The δ18O values in quartz (relative to SMOW) and δ34S values in chalcopyrite and galena (relative to CDT) range from 6.5 to 7.5‰ and 0.0–1.5‰ (mean: 7.0‰), respectively. At 300 °C, calculated fluid δ18O values are close to 0‰. These data suggest a magmatic origin for sulfur and a surficial origin for the mineralizing fluid. Mineralization at Qaleh-Zari is interpreted as epithermal and low-sulfidation in style and was probably related to a deep-seated magmatic system. Ore deposition was the result of boiling, cooling and pressure reduction.  相似文献   

7.
Farsesh barite in the central part of Iranian Sanandaj-Sirjan zone is a sample of epigenetic hydrothermal mineralization in dolomitized limestone, which provides appropriate chemicophysical conditions making the passage of mineral-bearing fluids possible. Barite veins may range from a few centimeters to 2 m in thickness that increases downward. The microthermometry measurements obtained from more than 30 fluid inclusions show relative homogenization temperatures ranging from 125 to 200 °C with an average of 110 °C for Farsesh barite deposits. The mean salinity measured proves 16 times as much as weight percentage of NaCl for barite. Coexistence of liquid- and vapor-rich fluid inclusions in barite minerals may provide an evidence of boiling in ore veins. Moreover, occurrence of bladed calcite, high-grade ore zones, and presence of hydrothermal breccia are all consistent with boiling. Thermometric studies indicate that homogenization temperatures (Th) for primary and pseudosecondary fluid inclusions in barite range from 125 to 200 °C with an average of 1,100 °C. The δ34S values of barite also lie between 8.88 and 16.6 %. The relatively narrow spread in δ34S values may suggest uniform environmental conditions throughout the mineralization field. Thus, δ34S values are lower than those of contemporaneous seawater, which indicates a contribution of magmatic sulfur to the ore-forming solution. Barite is marked by total amounts of rare Earth elements (REEs) (6.25–17.39 ppm). Moreover, chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (i.e., LREEs) from La to Sm, similar to those for barite from different origins. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in Farsesh deposit is enriched in LREEs compared with heavy rare Earth elements (HREEs). Similarity between Ce/La ratios in barite samples and those found in deep-sea barite supports its marine origin. Lanthanum and Gd exhibit positive anomalies, which are common features of chemical marine sediments. Cerium shows a negative anomaly in most samples inherited from the negative Ce anomaly of hydrothermal fluid that is mixed with seawater at barite precipitation. The available data including tectonic setting, host rock characteristics, REE geochemistry, and sulfur isotopic compositions may support a hydrothermal submarine origin for Farsesh barite deposit.  相似文献   

8.
9.
10.
Lead and zinc mineralization occurs in dolostones of the Middle Devonian Sibzar Formation at Ozbak-Kuh, which is located 150 km north of Tabas city in East Central Iran. The ore is composed of galena, sphalerite and calcite, with subordinate dolomite and bitumen. Wall-rock alterations include carbonate recrystallization and dolomitization. Microscopic studies reveal that the host rock is replaced by galena and sphalerite. The Pb–Zn mineralization is epigenetic and stratabound. The δ13C values of hydrothermal calcite samples fall in the narrow range between ?0.3‰ and 0.8‰. The δ18O values in calcite display a wider range, between ?14.5‰ and ?11.9‰. The δ13C and δ18O values overlap with the oxygen and carbon isotopic compositions of Paleozoic seawater, indicating the possible important participation of Paleozoic seawater in the ore-forming fluid. The δ18O signature corresponds to a spread in temperature of about 70 °C in the ore-bearing fluid. The δ13C values indicate that the organic materials within the host rocks did not contribute significantly in the hydrothermal fluid. The δ34S values of galena and sphalerite samples occupy the ranges of 12.2‰–16.0‰ and 12.1–16.8‰, respectively. These values reveal that the seawater sulfate is the most probable source of sulfur. The reduced sulfur was most likely supplied through thermochemical sulfate reduction. The sulfur isotope ratios of co-precipitated sphalerite–galena pairs suggest that deposition of the sulfide minerals took place under chemical disequilibrium conditions. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the galena samples represent average values of 18.08, 15.66, and 38.50, respectively. These ratios indicate that galena Pb likely originated from an orogenic source in which supracrustal rocks with high 238U/204Pb and 232Th/204Pb ratios are dominant. The average lead isotope model age portrays Cambrian age. This model age is not coeval with the host rocks, which are of middle Devonian age. It is probable that the pre-Middle Devonian model age shows the derivation of Pb from older sources either from host rocks of Cambrian age or from deposits previously formed in these rock units. The Pb isotopic composition of galena accords with the occurrence of an orogenic activity from Late Neoproterozoic to Lower Cambrian in Central Iran. The proposed genetic model considers the fact that mineralization formed in fractured and brecciated host rocks along shear zones and faults from metal-bearing connate waters that were discharged due to deformational dewatering of sediments.  相似文献   

11.
12.
天马山硫金矿是铜陵矿集区典型的层控热液叠加改造型矿床,层状矿体中发育大量的矽卡岩矿物。为查明该矿床中矽卡岩矿物的类型及形成环境,探讨矽卡岩与硫、金成矿之间的关系,对主要的矽卡岩矿物开展了矿物学及矿物化学研究,并对矿石进行了硫同位素地球化学研究。研究表明:矿区内的矽卡岩矿物以石榴子石和辉石为主,其中石榴子石以钙铁榴石为主,属于钙铁榴石-钙铝榴石固熔体系列(Gro0~18.73And80.54~99.00Spe+Pyr+Alm0.54~1.47);辉石以透辉石为主,其次为钙铁辉石,属于透辉石-钙铁辉石系列(Di62.35~97.65Hd1.89~36.27Jo0.31~1.55)。天马山硫金矿的矿物组合(钙铁辉石+透辉石)属于氧化型矽卡岩,表明矽卡岩形成于相对高温和高氧逸度的条件。石榴子石和辉石端元组分特征及辉石Mn/Fe值(0.02~0.07)具有典型的矽卡岩型铜、金矿床特征。矿石硫同位素具有岩浆源的特征,与区内燕山期岩浆-成矿作用形成的矿石一致,而明显区别于喷流-沉积作用形成的矿石,显示成矿作用与燕山期岩浆活动具有密切的成因联系。燕山期中酸性岩浆交代碳酸盐岩围岩形成大量矽卡岩,矽卡岩矿物的形成增加了岩石的孔隙度和渗透率,为晚期硫、金矿床的形成提供了有利条件。  相似文献   

13.
河南省石寨沟金矿床位于华北克拉通南缘华熊地块崤山地体内,矿区出露地层为中元古界熊耳群马家河组和许山组的中基性-中酸性火山岩,侵入岩为中酸性岩体,断裂破碎带控制着矿体的产出。矿石以块状、浸染状和角砾状构造为主,属蚀变岩型。围岩蚀变包括硅化、绢云母化、黄铁绢英岩化、碳酸盐化和绿泥石化。成矿过程初步划分为石英-黄铁矿阶段、石英-多金属硫化物阶段和石英-碳酸盐阶段,金主要沉淀于石英-多金属硫化物阶段。石英-多金属硫化物阶段发育富液两相包裹体、富气两相包裹体和含CO2三相包裹体,包裹体均一温度峰值介于260-320℃,盐度介于2.0%-9.0%NaCl eqv;石英-碳酸盐阶段仅发育富液两相包裹体,均一温度峰值介于140-200℃,盐度介于5.6%-8.1%NaCl eqv。流体不混溶作用是金沉淀的主要机制。该矿床矿石中硫化物的δ34S值变化于+3.7‰-+7.7‰,平均为+5.6‰。矿石的铅同位素比值变化较小,206Pb/204Pb=16.951-17.035,207Pb/204Pb=15.370-15.466,208Pb/204Pb=37.188-37.512。矿石铅同位素组成明显高于熊耳群火山岩,低于花山岩体铅同位素组成,而与太华群变质岩铅同位素组成相似,表明成矿物质主要来自太华群。  相似文献   

14.
通过矿床流体包裹体岩相学、显微测温学和包裹体激光拉曼光谱分析研究成矿流体性质,探讨矿床成因类型。研究结果表明,流体包裹体有气液两相、含纯液相和纯气相包裹体3种类型。气相成分以CO2为主,其次为H2O,总体属CH4-H2O-CO2体系;结合氢氧同位素地球化学特征(δD值为-64.1‰~-124.4‰;δ18O值为1.34‰~-6.96‰),确定成矿流体是岩浆热液与大气降水的混合流体。含矿硫(δ34S)指示硫主要为深部岩浆来源,并经历了陆壳硫的混染,包裹体均一温度以240℃~270℃区间为主,属中低温热液矿床。  相似文献   

15.
樊岔金矿床位于小秦岭金矿田的娘娘山岩体西南侧,受观音堂剪切带控制,赋矿围岩为太华超群变质岩。根据矿物组合特征和脉体穿插关系,成矿可分为早、中、晚3个阶段,分别以石英+钾长石±黄铁矿、石英+多金属硫化物、石英+方解石±黄铁矿为标志,以中阶段矿化最为重要。热液石英发育纯CO2包裹体(PC型)、CO2-H2O包裹体(C型)、水溶液包裹体(W型)和含子晶多相包裹体(S型)。早阶段流体包裹体主要为C型,次为PC型及少量的W型和S型包裹体,均一温度的峰值为340~360℃,盐度w(NaCleq)峰值为14.0%~16.0%。与早阶段相比,中阶段PC型、C型包裹体数量减少,W型、S型包裹体数量增多,均一温度峰值为320~340℃,盐度w(NaCleq)峰值为12.0%~14.0%。晚阶段只发育W型包裹体,均一温度峰值为180~200℃,盐度w(NaCleq)峰值为2.0%~4.0%。激光拉曼探针显示早阶段流体包裹体富含CO2和CH4,中阶段包裹体中仅富含CO2,而晚阶段包裹体中不含CO2或CH4。结合氢、氧同位素研究,认为樊岔金矿床成矿流体由早阶段中温、中低盐度、富含CO2和CH4的变质热液逐渐向晚阶段低温、低盐度、贫CO2的大气降水热液演化,沸腾作用和混合作用是其主要演化机制。根据沸腾包裹体计算得出早阶段和中阶段包裹体的捕获压力分别介于108~295 MPa和97~261 MPa之间,对应的成矿深度分别约为10.8 km和9.7 km。矿石硫、铅同位素研究表明,成矿物质主要来自太华超群围岩而非燕山期岩浆。综合上述区域地质、矿床地质、包裹体和同位素地球化学资料,樊岔金矿床应是形成于侏罗纪—早白垩世华北与扬子大陆碰撞造山过程挤压向伸展转变体制的造山型金矿床。  相似文献   

16.
Summary The timing of Zn–Pb mineralization hosted by early dolomitized lagoonal limestones (Crest facies) at Bleiberg (Carinthia, Austria) has been constrained using Sr-isotopes. This late stage Zn–Pb mineralization is a special feature of the Bleiberg deposit. Samples of the mineralized Crest facies are characterized by higher concentrations of minor and trace elements (except Ba and Sr) compared to samples from the weakly mineralized Wetterstein limestone of the lagoonal facies. The samples from the Crest facies indicate that a fluid with a minimum 87Sr/86Sr ratio of 0.7083 reacted at 210±30 Ma with carbonate rocks having 87Sr/86Sr ratios of approximately 0.7077 during a late stage of ore formation. The 87Sr/86Sr ratios correlate with the Mn and Cl concentrations. Lead isotope data of whole rock samples of Bleiberg yielded an isochron age of 180±40 Ma. They furthermore confirm the presence of two types of common lead; an isotopically distinct ore lead component is present within and close to the ore bodies. The other common Pb component is present in host rocks and in gangue minerals and is distinguished from the ore lead by lower 207Pb/204Pb and 208Pb/204Pb ratios. The Sr and the Pb ages are consistent with geological evidence indicating a Triassic age of Pb–Zn mineralization and support genetic models emphasizing the role of bacteriogenic sulfate reduction at low temperatures prior to subsidence and burial. Elevated 87Sr/86Sr values (>0.7080) of gangue minerals indicate an epigenetic origin of strontium. Our results are consistent with a genetic model postulating formation of the ore-bearing hydrothermal fluids “at depth” where they leached lead from pre-Upper Carboniferous basement rocks.  相似文献   

17.
老厂Pb-Zn多金属块状硫化物矿床是西南三江特提斯造山带内目前唯一报导的与OIB火山岩有关的VMS矿床,关于其成矿流体性质和成矿物质来源,以及由此约束的成矿作用过程依然值得深入研究。本文基于对该矿床Ⅰ号矿体群块状矿体和网脉状矿化系统的野外观察和矿相学研究基础上,选取部分块状矿石中的方解石和网脉状矿化中的石英开展流体包裹体热力学研究,并对各类矿石的硫化物进行硫同位素分析。结果显示,两类矿石的原生流体包裹体均属于NaCl-H_2O体系,块状矿石成矿流体温度110~158℃,盐度13.2%~18.7%NaCleqv;网脉状矿化成矿流体温度186~371℃,集中在246~339℃,盐度3.6%~19.8%NaCleqv,集中在6.9%~16.8%NaCleqv。从下部网脉状矿化到上部块状矿体的成矿温度降低,反映较高温度的成矿热液沿喷流通道上升至海底面与海水作用并降温。该过程中流体盐度并未发生明显下降,推测成矿前海底可能已存在较高盐度的卤水。各类矿石硫化物δ~(34)S值基本一致,均在-0.69‰~1.32‰,组成稳定(极差仅2.01‰),呈集中于零值的分布特征。共生硫化物对中δ~(34)S黄铁矿闪锌矿方铅矿,说明硫同位素基本达到分馏平衡。硫化物集中零值的硫同位素组成,既不同于由海水硫酸盐无机还原造成的明显正δ~(34)S值,也不同于有机(细菌)还原造成的明显负δ~(34)S值,因此提出硫来源于矿体下盘基性火山岩,通过海水循环淋滤含矿岩系或者直接源于浅部岩浆房的释气作用。综合前人C-H-O-Pb同位素组成研究结果,认为老厂VMS型矿床形成过程中发生过岩浆释气作用,为成矿提供了硫和金属成矿物质、以及初始成矿流体。  相似文献   

18.
Kosice矿床是斯洛伐克第二大的菱镁矿床(150Mt),位于Gemeric的东部.其镁质碳酸盐矿体赋存于石炭纪石灰石和含白云石的石灰石中,同时下盘黑色片岩中也含有被铁质碳酸盐交代的薄层碳酸盐透镜体.在华力西期造山运动(M1)中,古生代岩石受到了低级变质作用(绿泥石带).镁交代作用始于白云岩1的结晶作用,其后形成菱镁矿,最终沿裂隙形成铁菱镁矿.铁质碳酸盐包括早期铁白云石-白云石,铁白云石和后期含方解石和石英的菱铁矿.根据碳酸盐矿物对地质温度计,白云石l结晶作用发生在300~340℃.这一结果与M1的变质矿物组合(绿泥石,白云母-伊利石)吻合.铁白云石的结晶作用发生在320~370℃.少量细脉中可见白云石2,绿泥石和伊利石-多硅白云母,它们是由于阿尔卑斯期造山运动M2变质作用形成的更晚的矿物组合.菱镁矿的流体包裹体(FI)研究,显示存在不同成分的热卤水,卤水成分变化相当于NaCl含量21~42wt%,但其它成分的盐含量高于NaCl,溶解的CO2含量也有变化.两相包裹体均一温度(Th)的范围为164~217℃,含石盐子晶包裹体均一温度的范围为217~344℃.富CO2包裹体(盐度相当于NaCl含量1~22wt%,CO2的密度为0.28~0.77g·cm-3,均一温度为289~344℃)在菱镁矿中是次要的,但这种包裹体在与矿石伴生的石英中是主要的,并且与含石盐子晶流体包裹体共生.在后期镁交代过程中流体中的CO2逐渐增加.和铁质碳酸盐伴生的石英中只有两相包裹体,包裹体中CO2含量有所变化,盐度范围为17~24wt%的NaCl(或者34~36 wt%的MgCl2),均一温度为152~195℃.包裹体的数据结合碳酸盐地质温度计显示镁交代作用的压力范围是180~320MPa(7~12km),铁交代作用的压力范围是280~420MPa(10~16km),说明地热梯度约为25~35℃/km.包裹体浸出液的分析表明Cl/Br和Na/Br的比值存在变化,但仍旧说明富镁的卤水来源是上二叠纪和下三叠纪的分馏蒸发岩来源.铁质碳酸盐流体的高溴和高碘含量,说明在铁交代过程中周围黑色片岩的明显影响.菱镁矿和铁交代作用,表明交代流体中的碳和二氧化碳,主要是海洋沉积的来源.菱铁矿的"Sr/86Sr比值((0.71124~0.71140),说明锶的多来源,最初应是石炭纪和二叠纪的海水,但它被当地其它陆壳中的锶混染.  相似文献   

19.
山东招远灵雀山金矿床铅、硫同位素地球化学特征   总被引:2,自引:0,他引:2  
研究表明灵雀山金矿硫同位素组成为:3δ4S值为6.6‰~10.4‰,平均值为7.9‰。矿石铅同位素组成为:206Pb/204Pb为17.114~17.774,平均17.467;207Pb/204Pb为15.451~15.566,平均15.508;208Pb/204Pb为36.917~38.737,平均37.870。与其赋矿围岩的同位素组成不同。这说明该矿床的成矿物质可能部分来自幔源,具有与招掖金矿带其它金矿类似的特征。  相似文献   

20.
刘行  邹灏  李阳  蒋修未  李蝶 《地质论评》2019,65(Z1):223-224
正拉琼锑金矿床位于措美县西约17 km,大地构造位于青藏高原南部的特提斯喜马拉雅构造带东段,地处于印度河—雅鲁藏布江缝合带(IYZS)与藏南拆离系(STDS)大断裂之间。由于印度板块与欧亚板块碰撞之后,导致印度洋持续扩张,造成印度大陆不断向北挤压,形成喜马拉雅造山带(尹安,2000),该地区近东西向的断裂自北而南依次  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号