首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four bottom-mounted instrument-equipped tripods were deployed at two sections spanning the region characterized by severe sedimentation rates in the Deepwater Navigation Channel (DNC) along the North Passage of Changjiang Estuary in order to observe currents, near-bed suspended sediment, and salinity. Seaward residual currents predominated in the up-estuary section. In contrast, a classical two-layered estuarine circulation pattern occurred in the down-estuary section. Flow moved seaward in the upper layer and a heavier inflow, driven by the salinity gradient, moved landward in the lower layer. The near-bed residual currents in the up-estuary section and the down-estuary section acted in opposing directions, which implies that the region is a convergence zone of near-bed residual currents that trap sediment at the bottom. The maximum salinity gradient at the maximum flood current indicates the presence of a strong front that induces sediment trapping and associated near-bottom convergence of sediment, which explains the high sedimentation rates in this section of the estuary.  相似文献   

2.
Observations of the residual fluxes of water, salt and suspended sediment are presented for seven stations along the Tamar Estuary. The data include measurements over single spring and neap tidal cycles, and are generally applicable to medium or high run-off conditions.Surface to bed differences in salinity are typically of the order of several parts per thousand. Gravitational circulation is an important component of residual flow in the deep, lower reaches of the estuary. Here, Stokes drift is insignificant. In the shallow upper reaches, the major residual currents are generated by Stokes drift and freshwater inputs. Data are compared with predictions from Hansen and Rattray's (1966) model of estuarine circulation.Salt fluxes due to tidal pumping and vertical shear are directed up-estuary at spring tides, tidal pumping being dominant. Tidal pumping of salt is also directed up-estuary at neap tides, although it is insignificant in the lower reaches, where vertical shear dominates.Tidal pumping of suspended sediment is directed up-estuary near the head at spring tides, and probably contributes to the formation of the turbidity maximum. The existence of the turbidity maximum is predicted using a simplified model of the transport of water and sediment. The model shows that an additional mechanism for the existence of the turbidity maximum is an up-estuary maximum in the tidal current speeds (and thus resuspension). In the lower reaches, transport of suspended sediment is directed down-estuary at both spring and neap tides, and sediment is essentially flushed to sea with the fresh water.  相似文献   

3.
The concept of age of water (AW) is applied to the Chesapeake Bay to investigate the long-term transport properties for dissolved substances. A real-time calibrated hydrodynamic Chesapeake Bay model in 3 Dimensions (CH3D), employing a boundary-fitted curvilinear grid, is used for the study. The long-term transport properties, represented by AW, are investigated under the conditions of low river inflow of 1995 and high river inflow of 1996, as well as for constant mean inflows. The influences of freshwater, density-induced circulation, and wind-induced transport on age distribution have been investigated. Model results show that river inflows, wind stress, and density-induced circulation play important roles in controlling the long-term transport in the Bay. The model results shows that it requires 120–300 days for a marked change in the characteristics of the pollutant source discharged into the Bay from the Susquehanna River to affect significantly the conditions near the mouth under different hydrodynamic conditions. An increase of river discharge results in increases of downstream residual current and gravitational circulation, and thus reduces AW. The density-induced circulation contributes to the transport substantially. The dissolved substances discharged into the Bay are transported out of the Bay more rapidly when the estuary becomes more stratified. Southeasterly and southwesterly winds have strong impacts on the transport compared to the northeasterly and northwesterly winds. The former increases lateral and vertical mixing significantly. Consequently, the gravitational circulation is reduced and the transport time is increased by 50%. The model results provide useful information for understanding the long-term transport processes in the Bay.  相似文献   

4.
The Gulf of Finland is a 400-km long and 48–135-km wide tributary estuary of the Baltic Sea featuring the longitudinal two-layer estuarine flow modified by transverse circulation. Longitudinal volume transport in the deep layer is investigated by decomposing it into an averaged, slowly changing estuarine component (due to large-scale density gradients, river discharge and mean wind stress) and wind-driven fluctuating component. The derived expression relates the total deep-layer transport to the projection of wind stress fluctuation to a site-specific direction. The relationship is tested and calibrated by the results from numerical experiments carried out with the three-dimensional baroclinic circulation model. For the entrance to the Gulf of Finland, winds from northeast support standard estuarine circulation and winds from southwest work against the density-driven and riverine flow. The deep estuarine transport may be reversed if the southwesterly wind component exceeds the mean value by 4–5.5 m s−1. According to the data from hydrographic observations in the western Gulf of Finland, an event of advective halocline disappearance was documented in August 1998. Comparison of the deep-water transport estimates calculated from the wind data in 1998 with the observed salinity variations showed that the events of rapid decay of estuarine stratification were coherent with the estimated reversals of deep-layer volume transport, i.e. events of salt wedge export from the gulf.  相似文献   

5.
基于波-流耦合模型的珠江口悬浮泥沙数值模拟   总被引:1,自引:0,他引:1  
为研究珠江口悬浮泥沙输运动力机制,本文发展了一套三维波、流、泥沙耦合数值模型。模型结果与观测数据吻合较好,统计显示模型获得良好的评分分值。利用数值模拟研究了不同强迫(径流,波浪和风)对珠江口中悬浮泥沙的影响。模型结果表明,河口重力环流对珠江口最大浑浊带的发展起着重要作用,特别是在小潮期间。另外,径流的增加可导致泥沙向海输运。底部的悬浮泥沙浓度随着波浪底部轨迹速度和波高的增大而增加。由于西滩水深较浅,波浪对西滩悬浮泥沙的影响大于东槽。西南风引起的波浪对悬沙的影响大于东北风引起的波浪的影响,而东北风致流对悬沙的影响略大于对西南风致流的影响。在其他条件相同情况下,稳定的西南风比稳定的东北风更有利于伶仃洋悬浮泥沙浓度的增加;在稳定的西南风下,伶仃洋平均悬浮泥沙浓度约为稳定东北风下的1.1倍。  相似文献   

6.
The mixing agents and their role in the dynamics of a shallow fjord are elucidated through an Eulerian implementation of artificial tracers in a three-dimensional hydrodynamic model. The time scales of vertical mixing in this shallow estuary are short, and the artificial tracers are utilized in order to reveal information not detectable in the temperature or salinity fields. The fjord's response to external forcing is investigated through a series of model experiments in which we quantify vertical mixing, transport time scales of fresh water runoff and estuarine circulation in relation to external forcing.Using age tracers released at surface and bottom, we quantify the time scales of downward mixing of surface water and upward mixing of bottom water. Wind is shown to be the major agent for vertical mixing at nearly all depth levels in the fjord, whereas the tide or external sea level forcing is a minor agent and only occasionally more important just close to the bottom. The time scale of vertical mixing of surface water to the bottom or ventilation time scale of bottom water is estimated to be in the range 0.7 h to 9.0 days, with an average age of 2.7 days for the year 2004.The fjord receives fresh water from two streams entering the innermost part of the fjord, and the distribution and age of this water are studied using both ageing and conservative tracers. The salinity variations outside this fjord are large, and in contrast to the salinity, the artificial tracers provide a straight forward analysis of river water content. The ageing tracer is used to estimate transport time scales of river water (i.e. the time elapsed since the water left the river mouth). In May 2004, the typical age of river water leaving the fjord mouth is 5 days. As the major vertical mixing agent is wind, it controls the estuarine circulation and export of river water. When the wind stress is set to zero, the vertical mixing is reduced and the vertical salinity stratification is increased, and the river water can be effectively exported out of the fjord.We also analyse the river tracer fields and salinity field in relation to along estuary winds in order to detect signs of wind-induced straining of the along estuary density gradient. We find that events of down estuary winds are primarily associated with a reduced along estuary salinity gradient due to increased surface salinity in the innermost part of the fjord, and with an overall decrease in vertical stratification and river water content at the surface. Thus, our results show no apparent signs of wind-induced straining in this shallow fjord but instead they indicate increased levels of vertical mixing or upwelling during down estuary wind events.  相似文献   

7.
To understand the role that physical processes play on the biogeochemical cycles of estuaries, we conducted intense field studies of the turbidity maximum region within a partially mixed estuary (Winyah Bay, SC, USA) under contrasting conditions of river discharge, tides and wind. Water samples and hydrographic data were collected at different depths and locations along the main channel over several tidal cycles during several cruises to Winyah Bay. Tidal variations in current speed, salinity, total suspended solid concentrations were measured within each cruise and were consistent with estuarine circulation processes. Salinity and total suspended solid concentrations ranged from 0 to 32 and from 20 to over 500 mg L−1, respectively, with the highest salinity and total suspended solid values measured during periods of low river discharge. In fact, comparison of tidally averaged salinity and total suspended solid concentrations revealed marked differences among cruises that were negatively correlated to river discharge and SW wind speed. Moreover, significant contrasts in the chemical compositions of suspended particles were evident among periods of contrasting river discharge and wind regime. For example, the weight percent organic carbon content of suspended particles ranged from 1 to over 6% and displayed a positive correlation with river discharge. Similarly, both the molar carbon to nitrogen ratios (10 to 20 mol:mol) and stable carbon isotopic compositions (−25 to −29%) of the suspended organic matter varied significantly as a function of discharge and wind. Such trends indicate that in Winyah Bay low river discharge and steady SW winds promote resuspension of bed sediments from shallow regions of the estuary. These materials contain highly altered organic matter and their incorporation into the water column leads to the observed trends in suspended particle concentrations and compositions. Furthermore, these conditions result in net landward fluxes of salt, sediment and particulate organic matter throughout most of the water column, promoting efficient trapping of materials within the estuary. Our results illustrate the fundamental connection between physical forcings, such as discharge and wind, sediment transport processes and the cycling of biogeochemical materials in estuarine environments.  相似文献   

8.
Measurements are presented of median floc diameters and associated environmental data over spring-tide tidal cycles at two stations in the muddy Tamar Estuary, UK, for winter, spring and summer conditions. The particulate organic carbon and particulate total carbon contents of mudflats and SPM (suspended particulate matter) at the stations, together with other evidence, indicates that much of the SPM was derived from mud sources that were located between the two stations during winter and spring, and from very mobile sediment sources in the upper estuary during summer. Observed in-situ median floc sizes varied widely, from <50 to >500 μm and rapid settling of particles close to HW and LW (high and low water) left only the smaller flocs in suspension. Time-series of depth-averaged median floc sizes generally were most closely, positively, correlated with depth-averaged SPM concentrations. Floc diameters tended to reach maximum median sizes near the time when SPM concentrations were highest. These high concentrations were in turn largely generated by resuspension of sediment during the fastest current speeds. Although such correlations may have arisen because of SPM-driven floc growth - despite fast tidal currents - there is also the possibility that tough aggregates were eroded from the intertidal mudflats and mudbanks. Although a hypothesis, such large aggregates of fine sediment may have resulted from the binding together of very fine bed particles by sticky extracellular polymeric substances (EPS) coatings, produced by benthic diatoms and by other biologically-mediated activity. A rapid reduction of SPM occurred at the up-estuary station within 2.5 h of HW on the flood, when decelerating currents were still relatively fast. It appears that at least two processes were at work: localised settling of the largest flocs and up-estuary transport in which large flocs were transported further into the estuary before settling into the Tamar's ETM (estuarine turbidity maximum) over the HW-slack period. Up-estuary advection of large flocs and their eventual settling would place the down-estuary edge of the ETM above the upper-estuary station during summer, spring-tide conditions. This position of the ETM was observed close to HW during longitudinal surveys of the estuary.  相似文献   

9.
随着全球气候变暖加剧, 台风强度和强台风数量不断增加, 加剧了磨刀门水道咸潮灾害的变化形势。本文采用SCHISM(semi-implicit cross-scale hydroscience integrated system model)模型建立磨刀门水道三维水流盐度数值模型, 分析台风路径对磨刀门水道盐水入侵的影响。选取以“纳沙”为代表的西径型台风和以“天兔”为代表的东径型台风, 发现二者对盐度输运和层化过程的动力响应具有差异性。东径型台风导致外海减水, 平流通量向海增大; 而西径型台风引起外海增水, 逆转了原本向口外输出盐度的平流通量, 会引起严重的盐水入侵。台风不仅引起外海的增减水效应, 还带来强劲的局地风作用, 对水道流速和盐度分布产生重要影响。在西径型台风下, 顺河口向上游的风会减弱盐淡水分层, 并加强平流项的向海输出; 而在东径型台风下, 一定强度顺河口向下游的风加强盐淡水分层, 但当风速过强时, 则会削弱盐淡水分层。  相似文献   

10.
Analyses of sea level and current-meter data using digital filters and a variety of statistical methods show a variety of phenomena related to non-local coastal forcing and local tidal forcing in the northern reach of San Francisco Bay, a partially mixed estuary. Low-frequency variations in sea level are dominated by non-local variations in coastal sea level and also show a smaller influence from tidally induced fortnightly sea level variations. Low-frequency currents demonstrate a gravitational circulation which is modified by changes in tidal-current speed over the spring-neap tidal cycle. Transients in gravitational circulation induce internal oscillations with periods of two to four days.  相似文献   

11.
Pulsed re-introduction of Mississippi River water into the deltaic plain has been proposed as a wetland restoration strategy for coastal Louisiana. In this study, the hydrodynamic response of the Breton Sound estuary to a two-week pulse of Mississippi River water via the Caernarvon river diversion structure was investigated using a barotropic, three-dimensional, Finite-Volume Coastal Ocean Model (FVCOM). The numerical model was driven by tidal and subtidal forcing at the open Gulf boundary, freshwater discharge from the Caernarvon river diversion structure, as well as wind stress at the water surface. After successfully validating the model with field observations, three numerical experiments were run to assess the response of current, water level, and marsh flooding to different diversion discharge scenarios. The three scenarios considered were: a pulsed scenario of ∼200 m3 s−1 corresponding to the actual diversion discharge in March 2001, a constant discharge scenario of 40 m3 s−1 corresponding to the annually averaged discharge of 2001, and a scenario with no discharge. Numerical simulation results indicated that constant 40 m3 s−1 discharge caused little change in wetland inundation comparing to the no discharge case and, thus, inter-exchange between deep channels and the wetlands was not improved by this rate of diversion discharge. In contrast, the two-week ∼200 m3 s−1 discharge caused enhanced water exchange between wetlands and adjacent water bodies, substantially increasing water velocity in the bayous and channels of the upper estuary. These effects occurred in the estuary to about 20–25 km from the diversion structure, and caused a noticeable increase in down-estuary residual current with a significant reduction of local estuarine residence times for the whole estuary. Beyond 30 km from the diversion structure, the impact of high water discharge was small and the hydrodynamics was mostly controlled by tides and wind.  相似文献   

12.
简要回顾了潮汐河口环流、湍流、混合与层化的基本物理概念、内涵、研究方法、研究成果,指出了主要的研究进展,最后,展望了今后的研究方向。本文不考虑悬沙和风浪的影响。经典的河口环流也因潮汐应变的出现而受到挑战,河口环流由重力环流和潮汐应变环流构成。"涡黏度-剪切协方差(ESCO)"概念的提出,又区分出重力ESCO环流与潮汐ESCO环流。横向环流,尤其具有曲率的弯道中的横向环流,也得到进一步的理解。涡度方法的应用,揭示横向环流不仅由各种不同物理机制造成,而且对纵向河口重力环流有重要的影响。分层流中剪切湍流的理论加深了人们对潮汐河口湍流、混合的物理学的认识,势能差异方程更是使得定量理解潮汐河口混合与层化的三维时间、空间变化成为可能。  相似文献   

13.
Tidal effect on nutrient exchange in Xiangshan Bay, China   总被引:1,自引:0,他引:1  
Xiangshan Bay is an estuary in China which borders on the East China Sea. The circulation in the estuary is driven by tidal movement, residual current, the internal density distribution, and synoptic wind forcing; however, the last three are not the main dynamic factors affecting nutrient transport. Because the estuary tends to be eutrophic, a synoptic study was carried out to assess the influence of tidal movement on the nutrient distribution patterns within the estuary and to estimate the fluxes of nutrient transport between the estuary and the sea. Nitrate and ammonium are found to be exported from the estuarine water to the coastal water under usual tidal conditions, except for storm tides which result in large amounts being imported because of the extremely high concentrations in the coastal bottom water. Exports of phosphate and silicate are shown to be consistent during spring tides and neap tides in all seasons. However, the usual tidal regimes resulted in only minor nutrient exchange except during abnormal events.  相似文献   

14.
The relative impacts of tidal (neap, spring) and river discharge (including a flood event) forcing upon water and sediment circulation have been examined at the rock-bound Guadiana estuary. Near-bed and vertical profiles of current, salinity, turbidity, plus surface suspended sediment concentrations (SSC, at some stations only), were collected at the lower and central/upper estuary during tidal and fortnightly cycles. In addition, vertical salinity and turbidity profiles were collected around high and low water along the estuary. Tidal asymmetry produced faster currents on the ebb than on the flood, especially at the mouth. This pattern of seaward current dominance was enhanced with increasing river flow, due to horizontal advection that was confined within the narrow estuarine channel. The freshwater inputs and, at a degree less, the tidal range controlled the vertical mixing and stratification importance. Well-mixed (spring) and partially stratified (neap) conditions alternated during periods of low river flows, with significant intratidal variations induced by tidal straining (especially at the partially stratified estuary). Highly stratified conditions developed with increasing river discharge. Intratidal variability in the pycnocline depth and thickness resulted from current shear during the ebb. A salt wedge with tidal motion was observed at the lower estuary during the flood event. Depending on the intensity of turbulent mixing, the residual water circulation was dominantly controlled either by tidal asymmetry or gravitational circulation. The SSC was governed by cyclical local processes (resuspension, deposition, mixing, advection) driven by the neap-spring fluctuations in tidal current velocities. More, intratidal variability in stratification indicated the significance of tidal pumping at the partially and highly stratified estuary. The estuary turbidity maximum (ETM) was enhanced with increasing current velocities, and displaced downstream during periods of high river discharge. During the flood event, the ETM was expelled out of the estuary, and the SSC along the estuary was controlled by the sediment load from the drainage basin. Under these highly variable river flow conditions, our observations suggest that sand is exported to the nearshore over the long-term (>years).  相似文献   

15.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

16.
Salt intrusion in estuaries is important for ecological reasons as well as water extraction purposes. The distance salt intrudes upstream depends on a number of factors, including river discharge, tidal and wind mixing and gravitational circulation. In this paper, an analytical solution is presented for the salt intrusion in a well mixed, funnel-shaped estuary whose cross sectional area decreases exponentially (with decay coefficient β) with distance, x, inland, and in which longitudinal mixing is constant along the length of the estuary. The solution predicts that a graph of the logarithm of salinity against exp (βx) should be a straight line, with slope proportional to the mixing coefficient Kx. The solution is tested against observations from 15 surveys over a four-year period in the Incomati estuary. Good straight line fits, as predicted, are observed on all surveys, with a mean R2 = 0.97. The average value of Kx for all surveys is 38 m2 s−1. The solution is used to make predictions about the minimum river flow required to prevent salt intruding to an extent where it causes a detrimental effect on water extraction. The minimum recommended river flow required to prevent this is 35 m3 s−1. In recent years, flow has fallen below this level for several months each year.  相似文献   

17.
Understanding tidal and mean flow transport mechanisms that maintain the estuarine salt balance against seaward transport by river flow is one of the fundamental questions of estuarine oceanography. Previous salt transport studies have failed to resolve this problem for two principal methodological reasons, in addition to the inherent variability of estuaries. First, salt transport expansions used to represent the salt balance have included a large number of terms that could not be related to any theory of estuarine circulation and whose physical meaning was thus unclear. Second, it has proven difficult to measure small mean velocities in the presence of much larger tidal variations. A new analysis method that expresses Lagrangian scalar property transport in terms of time and space variations of Eulerian variables is much simpler than expansions previously used and yields new insights into estuarine transport processes. This approach (like previous expansions) is valid for narrow systems in which cross-channel transport processes are weak and the ratio of tidal amplitude to mean depth is small. A surface boundary condition is used to eliminate one class of troublesome terms. The equivalence of the tidal-cycle average transport of tidal variations in salinity and the Stokes transport of mean salinity is then employed to show that the vertically integrated tidal flow plays no role in the overall salt balance. That is, seaward transport of salt caused by the river flow can only be balanced by landward transport resulting from correlations between shear and stratification in the mean, tidal and overtide flows. In a hypothetical inviscid estuary, tide and overtide flows would be vertically uniform, and outward fluvial salt transport could only be balanced by shear and stratification in the mean gravitational circulation. In a more realistic example with strong friction, the gravitational circulation would be severely damped, and inward transport could only be accomplished by correlations of shear and stratification in the tide and overtide flows.  相似文献   

18.
长江入海泥沙是中国东部陆架海沉积物的主要来源之一。本文基于MODIS-Aqua卫星的遥感资料并结合实测悬浮体浓度,建立了基于颗粒物后向散射系数的悬浮体浓度的反演方法,获取了2002—2017年长江口海域的表层悬浮体浓度分布,并分析其在潮周期、季节内以及年际等不同时间尺度下的变化特征。结果表明,在潮周期内,长江口122.3°E以西海域表层悬浮体浓度大潮高于小潮,落潮大于涨潮,高潮大于低潮;在季节尺度内.6—8月表层悬浮体浓度逐渐增加。而122.3°E以东海域,则出现相反的情况;长江口122.3°E以西海域的夏季平均表层悬浮体浓度年际变化明显,主要受长江入海水沙量年际变化的影响。长江口122.3°E以东海域表层悬浮体浓度的年际变化几乎不受长江入海泥沙的影响。风向对悬浮体浓度的扩散具有显著的作用,南风有利于高浓度悬浮体向外海扩散,东风则抑制扩展。  相似文献   

19.
Hurricane Isabel made landfall along the North Carolina coast on September 18, 2003 (UTC 17:00) and the storm surge exceeded 2.0 m in many areas of the Chesapeake Bay and in the York River estuary. River flooding occurred subsequently, and the peak river discharge reached 317 and 104 m3 s−1 in the Pamunkey and Mattaponi rivers, respectively. The York River estuary experienced both storm surge and river flooding during the event and the estuary dynamics changed dramatically. This study investigates the hydrodynamics of the York River estuary in response to the storm surge and high river inflows. A three-dimensional model was used to investigate the changes of estuarine stratification, longitudinal circulation, salt flux mechanisms, and the recovery time required for the estuary to return to its naturally evolved condition without the storm. Results show that the salt flux was mainly caused by advection, which was induced by the barotropic gradient during the storm event. The net salt flux increased by a factor of 30 during the rise of the storm surge. However, the large amount of salt transported into the estuary was quickly transported out of the estuary as the barotropic gradient reversed during the descent of the storm surge. Subsequent high freshwater inflow influenced the estuarine circulation substantially. The estuary changed from a partially mixed estuary to a very stratified estuary for a prolonged period. The model results show that it will take about 4 months for the estuary to recover to its naturally evolved salinity distribution after the impacts of the storm surge and freshwater pulse.  相似文献   

20.
王亚  何青  沈健 《海洋学报》2014,36(1):48-55
利用水龄理论的新方法,借助环境水动力学模型定量讨论了多年平均径流条件下长江河口径流和潮汐作用对河口水流输运时间的影响。研究给出了长江河口水流输运时间的时空格局:多年平均流量条件下,水流从徐六泾输出至河口(122.5°E)大约需要24d,南、北槽分流口以上河段水流输运时间主要由径流控制,水流输运时间为8d,向下至拦门沙滩顶水域由径流和潮汐共同控制,水龄为16d,说明最大浑浊带区域的水流输运速度较上下游为慢,从一个侧面阐述了最大浑浊带区域水动力的特征;长江河口水流输运时间存在明显的层化现象,表底层相差最大值可达6d。数值模拟试验结果表明长江河口的潮汐作用是影响河口水流输运时间的关键要素,河口巨大的进潮量增强河口水流交换能力并减小水流输运时间,从而显著影响随水体运动的物质输运格局。水流输运时间研究,不仅可以成功应用于河口水动力环境的量化研究,而且可以为泥沙输运及污染物输运等环境变化研究提供动力的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号