首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of stable sea water-in-crude oil emulsions after an oil spill was first reported after the Torrey Canyon wreck in 1967. The problem of handling this stable water (65%)-in-oil (35%) emulsion rather than oil is evidenced in the additional expensive on-site storage requirement as well as the handling difficulty with the viscous semi-solid emulsion. This paper details the results of an R&D program that has established the mechanism for the formation of this emulsion. This insight enabled a specific effective chemical demulsifier to be formulated. A treatment technique was devised that entails injecting the demulsifier into the oil spill emulsion as it is skimmed from the water surface. The emulsion is then rapidly separated into water-free oil and a clean-water phase that can be decanted back into the sea. Full-scale tests were successfully conducted by JBF Scientific Corp. using two types of commercial JBF DIP skimmers in a small concrete lined pond.  相似文献   

2.
Review of behaviour of oil in freezing environments   总被引:2,自引:0,他引:2  
The current knowledge of the physical fate and behaviour of crude oil and petroleum products spilled in Arctic situations is reviewed. The fate and final deposition of oil in marine conditions is presented as based on the extant literature.

Spreading models were evaluated for oil on ice, under ice, in snow, in brash ice, and between blocks of ice. Models of oil transport under sheet and broken ice were considered, both for sea and river conditions. The ability of ice sheets to trap oil is discussed in relation to oil storage capacity. The effects of oil on a growing ice sheet were examined, both in terms of ice formation and the thermal effects of oil inclusions in ice. The migration of oil through ice was reviewed, focussing primarily on the movement through brine channels. The effects of oil on the surface of ice were considered, with emphasis on the effects of surface pools on ice melt. Similar consideration was given to the effects of oil on snow on the surface of ice.

The few quantitative studies of oil in open and dynamic ice conditions are reviewed. Observations of intentional small-scale spills in leads and ice fields are reviewed and compared with observations from real spills. The conditions under which “oil pumping” from leads occurs were quantified. The most common ultimate fate of oil in an ice field is to be released onto the water surface.  相似文献   


3.
Studies of the formation process of water-in-oil emulsions   总被引:2,自引:0,他引:2  
This paper summarizes studies to determine the formation process of water-in-oil emulsions and the stability of such emulsions formed in the laboratory and in a large test tank. These studies have confirmed that water-in-oil mixtures can be grouped into four states: stable emulsions, unstable water-in-oil mixtures, mesostable emulsions, and entrained water. These states are differentiated by rheological properties as well as by differences in visual appearance. The viscosity of a stable emulsion at a shear rate of one reciprocal second is about three orders of magnitude greater than that of the starting oil. An unstable emulsion usually has a viscosity no more than about 20 times greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. A mesostable emulsion has properties between stable and unstable, but breaks down within a few days of standing. The usual situation is that emulsions are either obviously stable, mesostable, or unstable. Entrained water, water suspended in oil by viscous forces alone, is also evident. Very few emulsions have questionable stability. Analytical techniques were developed to test these observations.

The type of emulsion produced is determined primarily by the properties of the starting oil. The most important of these properties are the asphaltene and resin content and the viscosity of the oil. The composition and property ranges of the starting oil that would be required to form each of the water-in-oil states are discussed in this paper.  相似文献   


4.
Electric power generation in the United States uses substantial amounts of fuel oil #6. Orimulsion, an emulsion of bitumen, water, and a surfactant, is an alternative. A portion of the information that managers need to compare the two fuels is their relative environmental impacts. Both fuels are shipped by sea, so the impact of spills on the marine benthos is a concern. We used microcosms to assess the relative impacts of simulated spills of these fuels on the microalgae of shallow subtidal sandy bottoms. Response variables included microalgal abundance, primary productivity, ratio of chlorophyll a to phaeophytin, and ratio of primary production to chlorophyll a. During our 88-day experiment, we found no significant differences between the fuels for any variable. We suggest that weathering before the spill reaches the shore removes the most toxic components, rendering the fuels essentially equal in their impact on benthic microalgae.  相似文献   

5.
The use of dispersants to treat oil spills in calm seas is discouraged because there is insufficient ‘mixing energy’ to cause immediate dispersion of the oil. However, dispersants might be applied while the seas are calm, in the expectation that they would work later when sea states increase. The present study examined the persistence of dispersants in treated oil slicks on calm water in a large outdoor wave tank. Test slicks, pre-mixed with dispersant, were allowed to stand on static and flowing water for up to six days, after which their dispersibility was tested by exposing them to breaking waves. Results showed that thicker slicks exposed to calm water for up to six days dispersed completely with the addition of breaking waves. Thinner slicks and slicks exposed to water movement became less dispersible within two days. The loss of dispersibility was caused by dispersant loss rather than by oil weathering.  相似文献   

6.
An oil spill-food chain interaction model, composed of a multiphase oil spill model (MOSM) and a food chain model, has been developed to assess the probable impacts of oil spills on several key marine organisms (phytoplankton, zooplankton, small fish, large fish and benthic invertebrates). The MOSM predicts oil slick thickness on the water surface; dissolved, emulsified and particulate oil concentrations in the water column; and dissolved and particulate oil concentrations in bed sediments. This model is used to predict the fate of oil spills and transport with respect to specific organic compounds, while the food chain model addresses the uptake of toxicant by marine organisms. The oil spill-food chain interaction model can be used to assess the environmental impacts of oil spills in marine ecosystems. The model is applied to the recent Evoikos-Orapin Global oil spill that occurred in the Singapore Strait.  相似文献   

7.
The relationship between oil droplet size and upper ocean turbulence   总被引:1,自引:0,他引:1  
Oil spilled at sea often forms oil droplets in stormy conditions. This paper examines possible mechanisms which generate the oil droplets. When droplet Reynolds numbers are large, the dynamic pressure force of turbulent flows is the cause of droplet breakup. Using dimensional analysis, Hinze (1955, A.I.Ch.E. Journal 1, 289–295) obtained a formula for the maximum size of oil droplets that can survive the pressure force. When droplet Reynolds numbers are small, however, viscous shear associated with small turbulent eddies is the cause of breakup. For the shear mechanism, we obtain estimates of droplet size as a function of energy dissipation rate, the ratio of oil-to-water viscosity and the surface tension coefficient.

The two formulae are applied to oil spills in the ocean. At dissipation rates expected in breaking waves, the pressure force is the dominant breakup mechanism and can generate oil droplets with radii of hundreds of microns. However, when chemical dispersants are used to treat an oil slick and significantly reduce the oil-water interfacial tension, viscous shear is the dominant breakup mechanism and oil droplets with radii of tens of microns can be generated. Viscous shear is also the mechanism for disintegrating water-in-oil emulsions and the size of a typical emulsion blob is estimated to be tens of millimeters.  相似文献   


8.
Physical factors affecting the formation of water-in-oil emulsions (‘chocolate mousse’) from crude Statfjord oil was investigated in the laboratory. Irradiation by visible light and mechanical agitation are shown to be essential. It is suggested that photochemical oxidation of oil components leads to the formation of surface-active, oil-soluble compounds. When these reach a sufficient concentration in the oil, water will be retained within the oil during physical mixing. The plausibility of such a mechanism is investigated further using additions of tetradecanal as an oil-soluble, surface-active agent and β-carotene as an inhibitor of photooxidation. The use of additives to stop ‘mousse’ formation is suggested.  相似文献   

9.
During oil spills, the aquatic environment is greatly endangered because oil floats on water making the penetration of sunlight difficult therefore primary productivity is compromised, birds and aquatic organisms are totally eliminated within a short period. It is therefore essential to remove the oil from the water bodies after the spillage. This work reports on the fabrication of oil loving electrospun polystyrene-exofoliated graphite fibre with hydrophobic and oleophillic surface properties. The fibre was applied for the selective adsorption of crude oil from simulated crude oil spillage on water. The maximum oil adsorption capacity of the EPS/EG was 1.15 kg/g in 20 min while the lowest oil adsorption capacity was 0.81 kg/g in 10 min. Cheap oil adsorbent was developed with superoleophillic and superhydrophobic properties.  相似文献   

10.
The European Atlantic area has been the scene of a number of extensive shipping incidents with immediate and potential long-term impacts to marine ecosystems. The occurrence of accidental spills at sea requires an effective response that must include a well executed monitoring programme to assess the environmental contamination and damage of the affected marine habitats. Despite a number of conventions and protocols developed by international and national authorities that focused on the preparedness and response to oil and HNS spills, much remains to be done, particularly in relation to the effectiveness of the environmental monitoring programmes implemented after oil and HNS spills. Hence, the present study reviews the status of the environmental monitoring programmes established following the major spill incidents over the last years in European waters, aiming at identifying the key monitoring gaps and drawing priorities for an effective environmental monitoring of accidental spills.  相似文献   

11.
The formation of oil-suspended particulate matter aggregates (OSAs) results from the heteroaggregation between dispersed oil droplets and suspended particulate matter present in coastal waters. This process has been recognized by the oil spill remediation community to enhance natural cleansing of oiled shorelines and oil dispersion in the water column. While several studies have been conducted on the formation and characteristics of OSAs, few studies have addressed the kinetics of OSA formation. Operationally, this has left decision-makers lacking information on the time scale of this process and its significance to oil dispersion in real spills. A laboratory study was conducted to investigate the kinetics of OSA formation as a function of mixing energy and the sediment-to-oil ratio using the standard reference material 1941b. Results showed that formation of OSAs increased exponentially with the mixing time and reached a maximum within 4 h. When the shaking rate increased from 2.0 to 2.3 Hz, the maximum oil trapping efficiency increased from 20% to 42% and the required shaking time decreased from 3.7 to 0.7 h.  相似文献   

12.
Most crude oils spread on open water to an average thickness as low as 0.1 mm. The application of dispersants enhances the transport of oil as small droplets into the water column, and when combined with the turbulence of 1 m waves will quickly entrain oil into the top 1 m of the water column, where it rapidly dilutes to concentrations less than 100 ppm. In less than 24 h, the dispersed oil is expected to mix into the top 10 m of the water column and be diluted to concentrations well below 10 ppm, with dilution continuing as time proceeds. Over the multiple weeks that biodegradation takes place, dispersed oil concentrations are expected to be below 1 ppm. Measurements from spills and wave basin studies support these calculations. Published laboratory studies focused on the quantification of contaminant biodegradation rates have used concentrations orders of magnitude greater than this, as it was necessary to ensure the concentrations of hydrocarbons and other chemicals were higher than the detection limits of chemical analysis. However, current analytical methods can quantify individual alkanes and PAHs (and their alkyl homologues) at ppb and ppm levels. To simulate marine biodegradation of dispersed oil at dilute concentrations commonly encountered in the field, laboratory studies should be conducted at similarly low hydrocarbon concentrations.  相似文献   

13.
The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the formation of oil-mineral-aggregates (OMAs) in natural seawater. Results of ultraviolet spectrofluorometry and gas chromatography flame ionized detection analysis indicated that dispersants and mineral fines, alone and in combination, enhanced the dispersion of oil into the water column. Measurements taken with a laser in situ scattering and transmissometer (LISST-100X) showed that the presence of mineral fines increased the total concentration of the suspended particles from 4 to 10microl l(-1), whereas the presence of dispersants decreased the particle size (mass mean diameter) of OMAs from 50 to 10microm. Observation with an epifluorescence microscope indicated that the presence of dispersants, mineral fines, or both in combination significantly increased the number of particles dispersed into the water.  相似文献   

14.
In recent years, the shipping of environmentally hazardous cargo has increased considerably in the Baltic proper. In this study, a large number of hypothetical oil spills with an idealized, passive tracer are simulated. From the tracer distributions, statistical measures are calculated to optimize the quantity of tracer from a spill that would stay at sea as long as possible. Increased time may permit action to be taken against the spill before the oil reaches environmentally vulnerable coastal zones. The statistical measures are used to calculate maritime routes with maximum probability that an oil spill will stay at sea as long as possible. Under these assumptions, ships should follow routes that are located south of Bornholm instead of the northern routes in use currently. Our results suggest that the location of the optimal maritime routes depends on the season, although interannual variability is too large to identify statistically significant changes.  相似文献   

15.
Water-in-oil mixtures such as emulsions, often form and complicate oil spill countermeasures. The formation of water-in-oil mixtures was studied using more than 300 crude oils and petroleum products. Water-in-oil types were characterized by resolution of water at 1 and 7 days, and some after 1 year. Rheology measurements were carried out at the same intervals. The objective of this laboratory study was to characterize the formed water-in-oil products and relate these properties to starting oil properties. Analysis of the starting oil properties of these water-in-oil types shows that the existence of each type relates to the starting oil viscosity and its asphaltene and resin contents. This confirms that water-in-oil emulsification is a result of physical stabilization by oil viscosity and chemical stabilization by asphaltenes and resins. This stabilization is illustrated using simple graphical techniques. Four water-in-oil types exist: stable, unstable, meso-stable and entrained. Each of these has distinct physical properties.  相似文献   

16.
Satellite services that deliver information about possible oil spills at sea currently use different labels of “confidence” to describe the detections based on radar image processing. A common approach is to use a classification differentiating between low, medium and high levels of confidence. There is an ongoing discussion on the suitability of the existing classification systems of possible oil spills detected by radar satellite images with regard to the relevant significance and correspondence to user requirements. This paper contains a basic analysis of user requirements, current technical possibilities of satellite services as well as proposals for a redesign of the classification system as an evolution towards a more structured alert system. This research work offers a first review of implemented methodologies for the categorisation of detected oil spills, together with the proposal of explorative ideas evaluated by the European Group of Experts on satellite Monitoring of sea-based oil Pollution (EGEMP).  相似文献   

17.
It has been well known that oil spills cause serious problems in the aquatic organisms. In particular, some species of teleosts, which develop on the sea surface thought to be affected by heavy oil (HO). During the embryogenesis, the nervous system is constructed. Therefore, it is important to study the toxicological effects of HO on the developing neurons. We exposed HO to eggs of Japanese flounder (Paralichthys olivaceus) and investigated the neural disorder. In larvae exposed by HO at the concentration of 8.75 mg/L, the facial and lateral line nerves partially entered into the incorrect region and the bundle was defasciculated. Furthermore, in the HO-exposed larvae, Sema3A, a kind of axon guidance molecule, was broadly expressed in second pharyngeal arch, a target region of facial nerve. Taken together, we suggested the possibility that the abnormal expression of Sema3A affected by HO exposure causes disruption of facial nerve scaffolding.  相似文献   

18.
Accidental oil spills from ships or rigs and inputs of effluent such as production formation water (PFW) are key perceived threats to tropical biota from industry activities. Scleractinian corals are an important functional component of tropical reefs and the abundance, diversity and resilience of coral communities can be used as an indicator of ecosystem health. In this paper, we report the effects of petroleum products, including water accommodated fractions (WAF) of crude oil, PFW and dispersant (Corexit 9527), on fertilization and larval metamorphosis of the widespread scleractinian coral, Acropora millepora (Ehrenberg, 1834) in laboratory-based assays. At 20% v/v PFW fertilization was inhibited by 25%. This concentration was equivalent 0.0721 mg l−1 total hydrocarbon (THC). In contrast, larval metamorphosis was more sensitive to this effluent, with 98% metamorphosis inhibited at the same concentration. Crude oil WAF did not inhibit fertilization of gametes until dispersant was introduced. Dispersed oil was slightly more toxic to fertilization than dispersant alone, suggesting toxicity to that event may be additive. The minimum concentration of dispersed oil which inhibited fertilization was 0.0325 mg l−1 THC. Larval metamorphosis was more sensitive than fertilization to crude oil. Although crude oil and dispersant inhibited larval metamorphosis individually, this toxicity was magnified when larvae were exposed to combinations of both. Crude oil inhibited metamorphosis at 0.0824 mg l−1 THC and at 0.0325 mg l−1 THC when dispersed in 10% v/v (dispersant/oil). Management of petroleum-related risks to spawning corals should consider not only the occurrence of the annual coral spawning event, but also the subsequent 1–3-week period during which most larval metamorphosis and recruitment occur.  相似文献   

19.
Within the period of our records, spills of vegetable oils at Vancouver harbour have caused greater losses of birds than spills of petroleum oils. Vegetable oils affect birds by feather wetting but do not exhibit odour and slick characteristics of petroleum oils. Because most vegetable oils are edible their potential danger to aquatic birds may go unnoticed; sites of storage and transhipment of vegetable oils may be overlooked in oil spill contingency planning.  相似文献   

20.
Methyl tert-butyl ether (MTBE), the widely used gasoline oxygenate, has been identified as a common ground water contaminant, and BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) have long been associated with gasoline spills. Because not all instances of ground water contamination by MTBE and BTEX can be attributed to spills or leaking storage tanks, other potential sources need to be considered. In this study, used motor oil was investigated as a potential source of these contaminants. MTBE in oil was measured directly by methanol extraction and gas chromatography using a flame ionization detector (GC/FID). Water was equilibrated with oil samples and analyzed for MTBE, BTEX, and the oxygenate tert-amyl methyl ether (TAME) by purge- and-trap concentration followed by GC/FID analysis. Raoult's law was used to calculate oil-phase concentrations of MTBE, BTEX, and TAME from aqueous-phase concentrations. MTBE, TAME, and BTEX were not detected in any of five new motor oil samples, whereas these compounds were found at significant concentrations in all six samples of the used motor oil tested for MTBE and all four samples tested for TAME and BTEX. MTBE concentrations in used motor oil were on the order of 100 mg/L. TAME concentrations ranged from 2.2 to 87 mg/L. Concentrations of benzene were 29 to 66 mg/L, but those of other BTEX compounds were higher, typically 500 to 2000 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号