首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于折射作用,在波浪近岸传播过程中会出现一种特殊的、沿着岸线传播的波浪,这种波浪被称为边缘波。边缘波平行于岸线传播,其振幅在岸线处最大,在远离岸线的方向,其振幅呈指数型减小,它们的能量基本被限制在离海岸一波长的距离之内,因此边缘波对近岸地区工程、地貌等有着重要影响。本文对边缘波的研究历史、研究进展进行了阐述,主要介绍了以下几个方面:(1)基于不同控制方程、不同地形上的边缘波理论;(2)实际观测到的边缘波特性;(3)物理模型试验中边缘波的造波方式以及观测到的边缘波特性;(4)数值模拟方法在边缘波研究中的应用。最后,展望了边缘波在未来的研究趋势。  相似文献   

2.
The nearshore circulation and the wave characteristics are important parameters, which control coastline morphology. The interaction of nearshore circulation with coastal structures, modify the wave characteristics and seabed topography, often resulting in scour near the foundation of the structures. This paper deals with the numerical prediction of nearshore circulation induced due to wave setup in the nearshore region with and without the structure [(i) structure resting on seabed (ii) structure raised above the seabed]. It is also helps understand the deficiencies in studying the coastal characteristics by describing the flow field due to the wave velocity potential alone. Comparison of the results of both nearshore circulation and the wave potential model are discussed and the importance of the study and its prototype applications are highlighted.  相似文献   

3.
The paper develops and analyzes two fully nonlinear boundary conditions that incorporate the motion of the shoreline in nonlinear time domain nearshore models. A moving shoreline essentially means the computational domain is changing with the solution of the flow. The problem is solved in two steps. The first is to establish an equation that determines the motion of the shoreline based on the local momentum balance. The second is to develop and implement into a shoreline model the capability of accommodating a changing computational domain. The two models represent two different ways of addressing this step: one is to track the position of the shoreline in a fixed grid by establishing a special shoreline point which generally is not a fixed grid point. The second is by a coordinate transformation that maps the changing domain onto a fixed domain and solves the basic equations in the mapped domain. The two shoreline conditions are tested against three known solution for nonlinear shoreline motion. Two are the 1-D solutions to the nonlinear shallow water (NSW) equations by Carrier and Greenspan [J. Fluid Mech. 4 (1958) 97], one representing the response to a transient change in the offshore water level, the other the motion due to a periodic standing wave, both on slopes steep enough to allow full reflection. The third is the 2-D horizontal (2DH) computational solution by Zelt [Coast. Eng. 15 (1991) 205] for the run-up of a solitary wave on a cusped beach. In all cases, both models are shown to behave well and give high accuracy results for suitably chosen grid and time spacings.  相似文献   

4.
《Coastal Engineering》2001,42(3):219-239
This paper describes an adaptive quadtree-based 2DH wave–current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone. The model accounts for wave breaking, shoaling, refraction, diffraction, wave–current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land–water interface at the shoreline. The wave period- and depth-averaged governing equations, which conserve mass, momentum, energy and wave action, are discretised explicitly by means of an Adams–Bashforth second-order finite difference technique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria (e.g. local current gradients). The model is verified for nearshore circulation at a sinusoidal beach and nearshore currents at a multi-cusped beach. Reasonable agreement is obtained with experimental data from da Silva Lima [da Silva Lima, S.S.L., 1981. Wave-induced Nearshore Currents. PhD Thesis, Department of Civil Engineering, University of Liverpool] and Borthwick et al. [Borthwick, A.G.L., Foote, Y.L.M., Ridehalgh, A., 1997. Nearshore measurements at a cusped beach in the UK Coastal Research Facility, Coastal Dynamics '97, Plymouth, 953–962]. The modelling approach presented herein should be useful in simulating nearshore processes in complicated natural coastal domains. Of particular value is the local grid enrichment capability, which permits refined modelling of important localised flow behaviour such as rip currents and surf-zone circulation systems.  相似文献   

5.
Recent field measurements on beaches of different slopes have established that wave motion at periods substantially longer than the incident waves dominates the velocity field close to the shore. Analysis of a number of extensive data sets shows that much of this long wave motion is in the form of progessive edge waves, though forced wave motion, standing edge waves and free waves propagating away from the shore may also contribute to the energy.Theoretically, the drift velocities in bottom boundary layers due to edge waves show spatial patterns of convergence and divergence which may move sediment to form either regular crescentic or cuspate features when only one edge wave mode dominates, or a bewildering array of bars, bumps and holes when several phase-locked modes exist together.Convincing field demonstration of the link between nearshore topography and edge waves only exists for the special case of small-scale beach cusps on steep beaches, formed by edge waves at the subharmonic (twice the period) of the incident waves. At longer periods the link is proving more difficult to establish, due to the longer time-scales of topographic changes, the interaction between pre-existing topography and the water motion, and the observation of broad-banded edge wave motion which is not readily linked to topography with a well-defined scale.These ideas are, however, central to the study of nearshore processes, as most of the plausible alternate hypotheses do not seem to lead to quantitative predictions. Clearly, further theoretical and observational work is essential.  相似文献   

6.
Wave overtopping nearshore coastal structures, such as shore-parallel breakwaters, can significantly alter the current circulation and sediment transport patterns around the structures, which in turn affects the formation of tombolos and salients in the nearshore area. This paper describes the implementation of a wave overtopping module into an existing depth-averaged coastal morphological mode: COAST2D and model applications to investigate the effect of wave overtopping on the hydrodynamics and morphodynamics around a group of shore-parallel breakwaters. The hydrodynamic aspects of the model were validated against a series of laboratory conditions. The model was then applied to a study site at Sea Palling, Norfolk, UK, where 9 shore-parallel segmented breakwaters including 4 surface-piercing and 5 low-crested breakwaters are present, for the storm conditions in Nov 2006. The model results were compared with laboratory data and field measurements, showing a good agreement on both hydrodynamics and morphological changes. Further analysis of wave overtopping effect on the nearshore hydrodynamics and morphodynamics reveals that wave overtopping has significant impacts on the nearshore circulation, sediment transport and the resulting morphological changes within such a complex breakwater scheme under the storm and macro-tide conditions. The results indicate the importance of including the wave overtopping in modelling nearshore morphodynamics with the presence of coastal structures.  相似文献   

7.
The random long wave runup on a beach of constant slope is studied in the framework of the rigorous solutions of the nonlinear shallow water theory. These solutions are used for calculation of the statistical characteristics of the vertical displacement of the moving shoreline and its horizontal velocity. It is shown that probability characteristics of the runup heights and extreme values of the shoreline velocity coincide in the linear and nonlinear theory. If the incident wave is represented by a narrow-band Gaussian process, the runup height is described by a Rayleigh distribution. The significant runup height can also be found within the linear theory of long wave shoaling and runup. Wave nonlinearity nearshore does not affect the Gaussian probability distribution of the velocity of the moving shoreline. However the vertical displacement of the moving shoreline becomes non-Gaussian due to the wave nonlinearity. Its statistical moments are calculated analytically. It is shown that the mean water level increases (setup), the skewness is always positive and kurtosis is positive for weak amplitude waves and negative for strongly nonlinear waves. The probability of the wave breaking is also calculated and conditions of validity of the analytical theory are discussed. The spectral and statistical characteristics of the moving shoreline are studied in detail. It is shown that the probability of coastal floods grows with an increase in the nonlinearity. Randomness of the wave field nearshore leads to an increase in the wave spectrum width.  相似文献   

8.
由于近岸视频监测技术具有构建成本低、时空分辨率高的特点,近年来已成为海岸动态监测的互补手段。在近岸视频监测中,水边线可作为岸滩边缘位置变化的替代指标,受复杂海滩地形及不规则的波浪及潮汐变化影响,如何从视频图像中准确检测水边线是近岸视频监测所面临的挑战问题之一。本文针对传统图像处理方法在水边线提取中存在的效率不高和抗噪声能力差等问题,将CIELab颜色模型和蚁群优化算法相结合,对台风风暴潮期间石老人海滩的水边线进行提取和定量分析,并与传统算法进行对比。对青岛石老人海滩2011年台风期间的实时影像资料分析结果表明,与传统的提取算法相比,本文提出的方法在数字视频影像的水边线监测应用中可靠性高,并具有良好的细节呈现能力和抗边缘噪声能力,适用于弱边缘水边线的提取。分析结果验证了本方法在极端天气条件下对视频影像中水边线动态变化的自动提取可行性,对构建长时序海滩岸线动态变化影像自动分析系统具有较好的应用价值。  相似文献   

9.
田海平  陈雷  王维  辛立彪 《海洋学报》2021,43(12):92-101
离岸流是近岸流的重要组成部分,当波浪受到特殊海滩地形的影响,会形成一股沿着离岸方向运动的高速水流,能够迅速将人带离海岸,对海滨安全造成威胁。为了深入探究离岸流的形成机理及水动力学特性,本文基于二阶Stokes波浪理论,采用了更为光滑的变截面沙坝模型,通过流体体积法捕捉自由液面,对离岸流进行三维数值模拟探究。本文重点分析了离岸流产生时流场的瞬时速度、时均速度、压强等不同参量的分布规律,结果显示在沙坝和海岸线之间,有一对方向相反的水循环体系;对比不同流层离岸流的速度,了解到波浪与离岸流的耦合作用;并探究了入射波波高对离岸流强度及分布区域的影响,深化了对离岸流水动力学过程的认识。  相似文献   

10.
李松喆 《海洋工程》2021,39(4):144-153
基于历史海图、历史时期卫星遥感影像、2019年实测水下地形和潮流、波浪数值模拟成果,研究该海域岸滩的发育演变背景、海床和岸线自然冲淤动态、动力泥沙环境及岸滩冲淤动力机制。采用LITLINE岸线演变数学模型,模拟计算了不同离岸距离和不同平面形态人工岛布置型式对近岸岸线变形的影响,岸滩泥沙动力机制和岸滩演变趋势表明,人工岛实施后近岸最大潮流流速小于近岸泥沙起动流速,不具备起动近岸岸滩泥沙的基本条件; SSE向波浪作用时,人工岛西北侧波高明显减弱,波向西偏; S向波浪作用时,人工岛北侧波高明显减弱; SSW向波浪作用时,人工岛东北侧波高明显减弱,波浪传播方向东偏;波浪场改变后人工岛掩护区东西两侧岸滩附近泥沙分别具有向东和向西运移至人工岛掩护区的趋势,形成掩护区的淤积和东西两侧岸线冲刷。  相似文献   

11.
In recent years, instrumentation for field flow measurements has become more and more sophisticated. In particular, local pressure and velocity are measured at frequency rates up to at least 2 Hz, which gives information on wave energy. The present work describes the methods for partially standing wave measurement in the presence of current by use of coincident measurements of both horizontal velocity and pressure, or vertical velocity. Reflection calculated from either coincident horizontal and vertical velocities or three-gauge methods are compared. They are based on existing experiments carried out in an ocean wave basin for both regular and irregular waves in the presence of current. Applications to field measurements, out of and in the breaking zones are then presented. In the nearshore, coincident horizontal and vertical velocities far from the bottom, and coincident horizontal velocity and pressure close to the bottom give relevant information concerning partially standing waves.  相似文献   

12.
Idealized computational simulations with the nearshore model XBeach were carried out for a series of barred beach configurations in order to quantify the impact of nearshore bars on infragravity swash. Results show that nearshore bar systems reduce infragravity swash energy at the shoreline. The amount of swash reduction was found to correlate with both bar depth and rip width, when a rip channel is present. In order to develop a generalized empirical model for significant infragravity swash for barred beaches, the simulations were used to extend the empirical swash model of Stockdon et al. (2006) to include bar characteristics. The developed empirical model relates significant infragravity swash to incident wave conditions and nearshore bar depth. With respect to Stockdon et al. (2006), this new model improves predictive skill by reducing root-mean-square error by 50% for the computational simulations and by 15% when applied to a range of field data.  相似文献   

13.
A shore-normal array of seven, bi-directional electromagnetic flowmeters and nine surface piercing, continuous resistance wave staffs were deployed across a multiple barred nearshore at Wendake Beach, Georgian Bay, Canada, and monitored for a complete storm cycle. Time-integrated estimates of total (ITVF) and net (INVF) sediment volume flux together with bed elevation changes were determined using depth-of-activity rods.

The three bars, ranging in height from 0.10 to 0.40 m accreted during the storm (0.03 m), and the troughs were scoured (0.05 m). Sediment reactivation depths reached 0.14 m and 12% of the nearshore control volume was mobilized. However, the INVF value for the storm was less than 1% of the control volume revealing a near balance in sediment volume in the bar system. Landward migration of the inner, crescentic and second, sinuous bars occurred in association with an alongshore migration of the bar form itself; the outermost, straight, shore-parallel bar remained fixed in location.

The surf zone was highly dissipative throughout the storm (ε = 3.8 × 102–192 × 102) and the wave spectrum was dominated by energy at the incident frequency. Spectral peaks at frequencies of the first harmonic and at one quarter that of the incident wave were associated with secondary wave generation just prior to breaking and a standing edge wave, respectively. The former spectral peak was within the 95% confidence band for the spectrum while the latter contributed not more than 10% to the total energy in the surface elevation spectrum even near the shoreline.

During the storm wave height exceeded 2 m (Hs) and periods reached 5 s (Tp k): orbital velocities exceeded 0.5 m s−1 (urm s) and were above the threshold of motion for the medium-to-fine sands throughout the storm. Shore-parallel flows in excess of 0.4 m s−1 were recorded with maxima in the troughs and minima just landward of the bar crest.

The rate and direction of sediment flux is best explained by the interaction of antecedent bed slopes with spatial gradients in the mean and asymmetry of the shore-normal velocity field. These hydrodynamic parameters represent “steady” flows superimposed on the dominantly oscillatory motion and assumed a characteristic spatial pattern from the storm peak through the decay period. Increases spatially in the magnitudes of both the mean flows and flow asymmetries cause an increasing net transport potential (erosion); decreases in these values spatially cause a decreasing net transport potential and thus deposition. These transport potentials are increased or decreased through the gravity potential induced by the local bed slope. Shore-parallel flow was important in explaining sediment flux and morphological change where orbital velocities, mean flows and flow asymmetries were at a minimum.  相似文献   


14.
孙涛  陶建华 《海洋学报》2003,25(3):104-112
在近岸缓坡浅水海岸,波浪破碎产生沿岸流是近岸海域流场的重要组成部分,它对污染物输移扩散规律的影响重大,在高阶近似抛物化缓坡方程求解大面积波浪场基础上,建立了波浪作用下污染物输移扩散数学模型.计算结果与不同坡度均匀斜坡地形上具有不同波高、周期的规则波及不规则波浪作用下污染物输移扩散实验结果进行了比较,分析了各种因素对波浪作用下沿岸流分布规律影响,所得结论认为地形坡度及入射波高对污染物输移扩散的影响较大,波浪作用将使缓坡海滩上污染物的输移扩散平行岸线方向.  相似文献   

15.
The newly developed nearshore circulation model, SHORECIRC, using a hybrid finite-difference finite-volume TVD-type scheme, is coupled with the wave model SWAN in the Nearshore Community Model (NearCoM) system. The new modeling system is named NearCoM-TVD and the purpose of this study is to report the capability and limitation of NearCoM-TVD for several coastal applications. For tidal inlet applications, the model is verified with the semi-analytical solution of Keulegan (1967) for an idealized inlet-bay system. To further evaluate the model performance in predicting nearshore circulation under intense wave–current interaction over complex bathymetry, modeled circulation patterns are validated with measured data during RCEX field experiment (MacMahan et al., 2010). For sediment transport applications, two sediment transport models are applied to predict three sandbar migration events at Duck, NC, during August to October 1994 (Gallagher et al., 1998). The model of Kobayashi et al. (2008) incorporates wave-induced onshore sediment transport rate as a function of the standard deviation of wave-induced horizontal velocities. The modeled beach profile evolution for two offshore events and one onshore event agrees well with the measured data. The second model investigated here combines two published sediment transport models, namely, the total load model driven by currents under the effect of wave stirring (Soulsby, 1997) and the wave-driven sediment transport model due to wave asymmetry/skewness (van Rijn et al., 2011). The model study with limited field data suggests that the parameterization of wave stirring is appropriate during energetic wave conditions. However, during low energy wave conditions, the effect of wave stirring needs to be re-calibrated.  相似文献   

16.
Based on the full water-wave equation, a second-order analytic solution for nonlinear interaction of short edge waves on a constant plane sloping bottom is presented in this paper. For special case of slope angle b=p/2, this solution can be reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline. Interactions between two edge waves including progressive, standing and partially reflected standing waves were also discussed. The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves were also discussed. The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated, and the corresponding theoretical autocorrelation and spectral density functions of the first and second orders are derived. The boundary conditions for the determining determination of the parameters of short edge wave are suggested, that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory. Finally some computation results are demonstrated.  相似文献   

17.
18.
This paper describes the application of Canonical Correlation Analysis (CCA) to derive forcing–response relations between the wave climate and shoreline position on a macrotidal gravel barrier located in the southwest of the U.K., and to develop a tool to determine shoreline positions from wave records. The data sequences comprise wave climate recorded by a nearshore directional wave buoy and video-derived shorelines over a time span of one year and a half. The hydrodynamic conditions are used to determine the probability density function of wave heights and alongshore energy fluxes. These are then related to shoreline change through a CCA analysis. The CCA analysis identifies patterns of behaviour of the wave conditions and the shoreline position, and the relation between both patterns is found to provide useful information about the beach response to wave action. The analysis shows that the movement of sediment is greater at the southern end of the study area and that there is an immediate shoreline response to the wave action. In the case of coastal management it is more often the case that wave forecasts are available on a routine basis. The ability of the CCA to provide useful estimates of shorelines from wave conditions was tested by using measured waves to calculate the corresponding shoreline position from additional data at the end of the sequences. Shoreline positions determined with the CCA agreed well with the measured ones. Thus, the CCA is found to be a useful tool to determine unknown shoreline positions and support effective coastal management if good quality hydrodynamic and morphological data are available to input into the initial set-up of the technique.  相似文献   

19.
为研究珊瑚礁坪上采掘坑位置变化对珊瑚礁海岸波浪传播变形的影响, 本文通过物理模型试验测试了采掘坑在不同位置和无坑情况下一系列不规则波工况的波浪特征。结果表明, 随着采掘坑位置朝岸线附近移动直至无坑时, 岸线附近的短波波高逐渐减小; 采掘坑的存在减弱了岸线附近的低频长波波高, 当采掘坑位于岸线附近时, 长波波高还受到局部水深增加的影响而进一步减弱。采掘坑从礁缘移动至岸线附近直到无坑时, 岸线附近的增水逐渐增大, 这种趋势在礁坪水深较大时更为明显。通过相干函数分析, 证明了礁坪上低频长波是由于短波群破碎点的移动而产生, 采掘坑位置的变化对低频长波的产生无明显影响; 通过传递函数分析, 验证了礁坪上的低频长波存在一阶共振放大效应, 采掘坑的存在减弱了这种放大效应, 当坑位于礁坪中间和岸线附近时, 这种减弱效应更为显著。  相似文献   

20.
Based on the full water-wave equation,a second-order analytic solution for nonlinear interaction of short edge waves on a plane sloping bottom is presented in this paper.For special case of slope angle β=π/2,this solution can reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline.Interactions between two edge waves including progressive,standing and partially reflected standing waves are also discussed.The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves are also given.The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated,and the corresponding theoretical autocorrelation and spectral density functions of the first and the second orders are derived.The boundary conditions for the determination of the parameters of short edge wave are suggested,that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory.Finally some computation results are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号