共查询到20条相似文献,搜索用时 14 毫秒
1.
The eastern border of the Middle Valley of the Tiber River is characterized by several Plio-Pleistocene paleoshorelines, which extend for about 100 km along the western margin of the Central Apennines (Italy). We studied these paleoshorelines by the means of geological and paleontological analyses and new 87Sr/ 86Sr isotope analyses. The youngest and uppermost paleoshorelines have been detected and mapped through detailed geologic and stratigraphic surveys, which led to the recognition of nearshore deposits, cliff breccias, alignments of Lithophaga borings, fossil abrasion notches and wave-cut platforms. The altitude of these paleoshorelines decreases almost regularly in the NNW–SSE direction from 480 to 220 m a.s.l. Measurements of the 87Sr/ 86Sr isotope ratio have been conducted on corals and mollusks collected from sediments outcropping close to the paleoshorelines. The isotopic dating results indicate numerical values that range between 0.70907 and 0.70910 all over the 100-km outcrop. These results, together with biostratigraphic data, constrain the age of the youngest paleoshorelines to 1.65–1.50 Ma. These paleoshorelines are thus considered almost isochronous, giving an estimated uplift rate of 0.34–0.17 ± 0.03 mm/a moving from NNW to SSE. Shape, length and continuity of the 100-km-long observed movements indicate that the studied paleoshorelines are an important marker of the Quaternary uplift of the Central Apennines. 相似文献
3.
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock M W 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units). 相似文献
4.
This paper summarises the results of combined structural and geomorphological investigations we carried out in two key areas, in order to obtain new data on the structure and evolution of the Tyrrhenian slope of the southern Apennines. Analysis by a stress inversion method [Angelier, J., 1994. Fault slip analysis and paleostress reconstruction. In: Continental Deformation. P.L. Hancock Ed., Pergamon Press, Oxford, 53–100] of fault slip data from Mesozoic to Quaternary formations allowed the reconstruction of states of stress at different time intervals. By integrating these data with those deriving from the stratigraphic and morphotectonic records, chronology and timing of the sequence of the deformation events was obtained.The tectonic history of the region can be related to four deformation events. Structures related to the first event, that was dominated by a strike-slip regime with a NW–SE oriented σ1 and was active since Mid–Late Miocene, do not significantly affect the present day landscape, as they were strongly displaced and overprinted by subsequent deformation events and/or deleted by erosion. The second and third events, that may be considered as the main responsible for the morphostructural signature of the region, are comparable with the stretching phases recognised offshore and considered to be responsible for the opening and widening of the Tyrrhenian basin. In particular, the second event (with an E–W oriented σ3), took place in the Late Miocene/earliest Pliocene and was first dominated by a strike-slip regime, that was also responsible for thrusting and folding. Since Late Pliocene, it was dominated by an extensional regime that created large vertical offsets along N–S to NW–SE trending faults. The third event, that was dominated by extension with a NW–SE oriented σ3, started in the Early Pleistocene and was responsible for formation of the horst-and-graben structure with NE–SW trend that characterises the Tyrrhenian margin of the southern Apennines. The fourth deformation event, which is characterised by an extensional regime with a NE–SW trending σ3, started in the late Middle Pleistocene and is currently active. 相似文献
5.
This paper presents the findings from a study on gravity-induced slope deformations along the northern slope of Mt. Nuria (Rieti-Italy). The slope extends from the village of Pendenza to the San Vittorino plain and hosts the Peschiera River springs, i.e. the most important springs of the Central Apennines (average discharge: about 18 m 3/s). Detailed geological-geomorphological and geomechanical surveys, supported by a site stress-strain monitoring system and laboratory tests, led us to define the main evolutionary features of the studied phenomena. Based on the collected data, a “geological-evolutionary model” was developed with a view to identifying a spatio-temporal correlation between relief forms, jointing of the rock mass and its stress conditions. The geological-evolutionary model was expected to improve numerical simulations and to test our assumptions. The numerical model also allowed us to simulate changes in the stress-strain conditions of the rock mass and correlate them with jointing, seepage, as well as with site-detected and site-monitored forms and deformations. In particular, significant relations between seepage, tensile stresses within the rock mass, karst solution and collapse of cavities were identified. 相似文献
6.
Extensional deformations are common within foredeep basins and generally consist of hinterland-dipping normal faults located at the foredeep–foreland transition zones. Foreland-dipping normal faults at the belt–foredeep boundaries, by contrast, are far less documented and their occurrence is not predicted by simple orogenic load models. New surface data integrated with seismic reflection profiles across the Central Apennines of Italy reveal the occurrence of foreland-dipping normal faults located in the inner edges of foredeep depressions. Extensional deformations are systematically found within sequentially younger Tortonian, Messinian and Early Pliocene foredeep basins, thus suggesting that normal fault development was an intrinsic feature of the evolving belt–foredeep–foreland system and could have influenced the stratal architectures of the host syn-orogenic deposits. Foreland extension is consistent with existing geodynamic models for the Apennines and could represent the effects of lithospheric bending: its recognition and documentation elsewhere could provide significant insights to improve our understanding of syn-orogenic basin dynamics. 相似文献
7.
The Gran Sasso range is a striking salient formed by two roughly rectilinear E–W and N–S limbs. In the past 90° counterclockwise (CCW) rotations from the eastern Gran Sasso were reported [Tectonophysics 215 (1992) 335], suggesting west–east increase of rotation-related northward shortening along the E–W limb. In this paper, we report on paleomagnetic data from Meso-Cenozoic sedimentary dykes and strata cropping out at Corno Grande (central part of the E–W Gran Sasso limb), the highest summit of the Apennine belt. Predominant northwestward paleomagnetic declinations (in the normal polarity state) from both sedimentary dykes and strata are observed. When compared to the expected declination values for the Adriatic foreland, our data document no thrusting-related rotation at Corno Grande. The overall paleomagnetic data set coupled with the available geological information shows that the Gran Sasso arc is in fact a composite structure, formed by an unrotated-low shortening western (E–W trending) limb and a strongly CCW rotated eastern salient. Late Messinian and post-early Pliocene shortening episodes documented along the Gran Sasso front indicate that belt building and arc formation occurred during two distinct episodes. We suggest that the southern part of a late Messinian N–S front was reactivated during early–middle Pliocene time, forming a tight range salient due to CCW rotations and differential along-front shortening rates. The formation of a northward displacing bulge in an overall NW–SE chain is likely a consequence of the collision between the Latium-Abruzzi and Apulian carbonate platforms during northeastward propagation of the Apennine wedge, inducing lateral northward extrusion of Latium-Abruzzi carbonates towards ductile basinal sediment areas. 相似文献
8.
A biostratigraphic study carried out in the Monti d'Ocre area, Abruzzi, Central Apennines, allowed us to recognize Orbitolina ( Conicorbitolina) moulladei ‘Strata 5 (1985) 1’, Praealveolina iberica Reichel and Praealveolina simplex Reichel in uppermost Albian–lower Cenomanian shelf-edge deposits of the Fossato Machè succession. These foraminifers have now been found for the first time in the Apennines of central Italy; their finding is quite important from a palaeobiogeographic viewpoint, as it contributes to the improvement of our knowledge on facies distribution in the circum-Mediterranean regions during the Cretaceous Period. In the study area, the coeval Monte Rotondo and Monte Orsello sections also crop out; these are characterized by bauxite deposits and stratigraphic gaps reflecting episodes of emergence on the carbonate platform. The Monte Rotondo and Monte Orsello sections accumulated in a platform back-reef environment; consequently, in this sector of the Monti d'Ocre area, the depositional environment shifted from a back-reef westward and southward to a shelf-edge northward, during the latest Albian–early Cenomanian. Owing to synsedimentary tectonics, the area investigated underwent differential subsidence: westward and southward, wide areas were uplifted and subjected to emergence, karstification and bauxite accumulation, whereas sedimentation continued in a shelf-edge environment in the north-eastern area. 相似文献
9.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area. 相似文献
10.
We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4–5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3–0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano – Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW–SE and progressively bending to the E–W in its southern part, and a 7 km-long segment striking E–W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over).An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese – Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2–3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic interpretation of poorly-known earthquakes (e.g., 346/355 AD earthquake on the Ailano – Piedimonte Matese – Gioia Sannitica fault system), and stimulates and further orients seismotectonic investigations aimed at constraining the segmentation pattern and seismogenic potential of the area. 相似文献
11.
Bonini (2009, Structural controls on a carbon dioxide-driven mud volcano field in the Northern Apennines (Pieve Santo Stefano, Italy): relations with pre-existing steep discontinuities and seismicity. Journal of Structural Geology 31, 44–54) presents a 2D mechanical analysis to infer the failure conditions responsible for the seismicity distribution during an M w = 4.6 seismic sequence nucleating during 2001 in the Northern Apennines. In my view the mechanical analysis presented in this paper has some weakness or is not well constrained, in particular: 1) the assumption of a dip angle of 50°, is not consistent with the activated structures; 2) the P f = σ3 condition, difficult to be attained along a cohesionless fault dipping at 50°; 3) the isotropic stress state, i.e. σ2 = σ3, that is not consistent with the active or recent stress field in the area. 相似文献
12.
Datolite, ideally CaB[(OH/SiO 4)], from hydrothermal veins crosscutting pillow basalt in 10 different localities of the Northern Apennine ophiolites was investigated with regard to mineral chemistry and fluid inclusion microthermometry. Bulk analyses of datolite crystals show REE contents below chondritic, except for La and Ce. With respect to host rock, datolite is occasionally enriched in La, Rb, Cs, Be, and shows relatively high contents of chalcophile elements (Cu, Zn, Pb, Ni) when occurring in contact with sulfide-mineralized basalt. Volatiles escaped during the decomposition in the temperature range 600 and 700 °C. The main component is water. The temperature maximum of water release is different and frequently with a shoulder or a second maximum. Together with water, sulfur species as H 2S and SO 2 and traces of boron species escaped. The CO 2 release by the decomposition especially of datolite from Castellaro and Cinghi has a maximum in the range of 500-580 °C and is different from the decomposition of calcite. Together with CO 2 a boron species escaped. Chlorine does not detect. Two-phase (L+V) fluid inclusions texturally identifiable as primary and secondary were observed, yielding average homogenization-temperatures of 236 and 173 °C, respectively. Fluid inclusion cooling data yield calculated salinity in the range of 10-16 wt% NaCl equivalents, thus relatively higher compared with seawater. The results are compatible with those reported for fluids formed under diagenetic conditions, but differ from those observed in seafloor hydrothermal systems and/or emanating from magmas. Distribution of trace elements between datolite and host basalt indicates enrichment with respect to the host rock limited to a few elements such as La, Rb, Cs, Be, Ni, Cu, Zn and Pb. The lithophile elements can be hosted in the datolite lattice, whereas the chalcophile metals and Ni are probably carried in sub-microscopic inclusions. 相似文献
13.
The investigated mantle bodies from the External Ligurians (Groppo di Gorro and Mt. Rocchetta) show evidences of a complex evolution determined by an early high temperature metasomatism, due to percolating melts of asthenospheric origin, and a later metasomatism at relatively high temperature by hydrothermal fluids, with formation of rodingites. At Groppo di Gorro, the serpentinization and chloritization processes obliterated totally the pyroxenite protolith, whereas at Mt. Rocchetta relics of peridotite and pyroxenite protoliths were preserved from serpentinization. The rodingite parageneses consist of diopside + vesuvianite + garnet + calcite + chlorite at Groppo di Gorro and garnet + diopside + serpentine ± vesuvianite ± prehnite ± chlorite ± pumpellyite at Mt. Rocchetta. Fluid inclusion measurements show that rodingitization occurred at relatively high temperatures (264–334 °C at 500 bar and 300–380 °C at 1 kbar). Garnet, the first phase of rodingite to form, consists of abundant hydrogarnet component at Groppo di Gorro, whereas it is mainly composed of grossular and andradite at Mt. Rocchetta. The last stage of rodingitization is characterized by the vesuvianite formation. Hydrogarnet nucleation requires high Ca and low silica fluids, whereas the formation of vesuvianite does not need CO 2-poor fluids. The formation of calcite at Groppo di Gorro points to mildly oxidizing conditions compatible with hydrothermal fluids; the presence of andradite associated with serpentine and magnetite at Mt. Rocchetta suggests Fe 3+-bearing fluids with fO 2 slightly higher than iron-magnetite buffer. We propose that the formation of the studied rodingite could be related to different pulses of hydrothermal fluids mainly occurring in an ocean-continent transitional setting and, locally, in an accretionary prism associated with intra-oceanic subduction. 相似文献
14.
Abstract Mg-gabbros from East Ligurian ophiolites (Northern Apennines, Italy) display a high-temperature/low-pressure recrystallization localized along ductile shear zones. In deformed gabbros, the igneous diopside is recrystallized into granoblastic aggregates of neoblastic diopside and minor red-brown amphibole. The latter displays a pargasitic composition, with high amounts of Al IV Na(A) and Ti (± 1.8, 0.7 and 0.4 atoms per formula unit, respectively). Major element composition of neoblastic minerals highlight equilibration temperature conditions in the range 800–950° C. Red-brown Ti-pargasite also occurs as a minor interstitial constituent, presumably growing from a residual trapped liquid, in the differentiated lithologies (Fe-Ti-diorites) of the plutonic ophiolitic complex. By means of ion microprobe (SIMS technique), rare earth (La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb) and selected trace elements (Sr, Y, Cr, V, Sc, Zr, Ti) have been analysed in igneous and neoblastic diopside, as well as in Ti-pargasites. Ti-pargasites have also been analysed for F and Cl, and compared with the halogen composition of the amphiboles, mainly hornblendes to actinolites, which are related to the subsequent low-temperature brittle evolution. Neoblastic Ti-pargasite from deformed Mg-gabbros bears close compositional similarities with igneous Ti-pargasite from undeformed Fe-Ti-diorites, whereas it is geochemically distinct from the amphiboles post-dating the ductile event. In particular, Ti-pargasites have relatively high contents of F, REE, Y, Zr and Sr, which are not consistent with crystallization in the presence of seawater-derived hydrothermal fluids. High-grade recrystallization probably developed in the presence of volatile-rich igneous fluids, either trapped between the cumulus minerals or injected into the ductile shear zones from outside the local system. An alternative hypothesis comprises the absence of fluid phase and the development of ductile shear zones in Ti-pargasite-rich layers. The petrological features of deformed gabbros recovered from present-day slow-spreading ridges and fracture zones bear close similarities with the investigated ophiolitic metagabbros. In East Ligurian ophiolites, high-grade ductile shear zones have been related to the initial stages of the uplift of the gabbro-peridotite complex to the sea-floor. 相似文献
15.
The last (decompression) stages of the metamorphic evolution can modify monazite microstructure and composition, making it difficult to link monazite dates with pressure and temperature conditions. Monazite and its breakdown products under fluid‐present conditions were studied in micaschist recovered from the cuttings of the Pontremoli1 well, Tuscany. Coronitic microstructures around monazite consist of concentric zones of apatite + Th‐silicate, allanite and epidote. The chemistry and microstructure of the monazite grains, which preserve a wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that this mineral underwent a fluid‐mediated coupled dissolution–reprecipitation and crystallization processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram modelling allow the reaction history among accessory minerals to be linked with the reconstructed P–T evolution. The partial dissolution and replacement by rare earth element‐accessory minerals (apatite–allanite–epidote) occurred during a fluid‐present decompression at 510 ± 35 °C. These conditions represent the last stage of a metamorphic history consisting of a thermal metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C and 8 kbar. An anticlockwise P–T path or two clockwise P–T loops can fit the above P–T constraints. The former path may be related to a context of late Variscan strike‐slip‐dominated exhumation with minor Tertiary (Alpine‐related) reworking and fluid infiltration, while the latter requires an Oligocene–Miocene fluid‐present tectono‐metamorphic overprint on the Variscan paragenesis. 相似文献
16.
This paper examines the morphotectonic and structural–geological characteristics of the Quaternary Martana Fault in the Umbria–Marche Apennines fold‐and‐thrust belt. This structure is more than 30 km long and comprises two segments: a N–NNW‐trending longer segment and a 100°N‐trending segment. After developing as a normal fault in Early Pleistocene times, the N–NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE–ENE‐trending σ 3 axis and NW–NNW σ 1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N–NNW‐trending fault segments and almost pure normal faulting on newly formed NW–SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left‐lateral kinematic along N–NNW‐trending fault segments is also revealed by the 1.8 m horizontal offset of the E–W‐trending Decumanus road, at the Roman town of Carsulae. We interpret the present‐day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north‐northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
17.
Geochemical maps can provide us with much information on geology, earth surface processes and anthropogenic pressure and are valuable tools for ore prospecting and land management. Stream sediments represent an integral of the various possible sources of sediments upstream from the sampling point therefore there can be multiple signal sources but generally the prevailing signal source is the one related to bedrock geology. Stream sediments collected from active second-order channels including singular geological units, were selected in order to determine the geochemical characteristics of each unit. The aim of this study was to analyse their potential for using them to integrate geological interpretation and produce a geologically-oriented geochemical map. From the 770 samples collected for a regional geochemical mapping program, we selected 149 samples whose catchment basin included only one of the members recognized within the Marnoso–Arenacea formation. This Middle-Upper Miocene (Langhian–Tortonian) turbiditic unit forms the backbone of the Romagna Apennines and has been subdivided into 14 members according to age and lithostratigraphic criteria. The results indicate that there are marked differences in the composition of the members of the Marnoso Arenecea formation which indicate the provenance of the sediment and the palaeogeographic evolution of the units. By means of univariate and multivariate statistical analyses (Factor analyses) two main types of sediment compositions are identified: Tortonian members are characterized by sialic coarse grain- sediments while the Langhian–Serravallian members are richer in carbonate fraction, slightly enriched in a mafic contribution. This study elaborated the geochemical data from a geological point of view by integrating the information available in literature to spatially extend the interpretation based on limited site observation as for petrographic studies. In general, the geochemical map based on a geological unit could be a useful tool for carrying out the geological reconstruction of a complex area. 相似文献
18.
In the Alpine-Mediterranean region, the continental redbeds and shallow-marine siliciclastics related to the early depositional
phases of the Late Permian-Mesozoic continental rifting are referred to as the most common representative of the “Verrucano
tectofacies”. The Verrucano-type successions exposed in southern Tuscany are diachronous, spanning from Triassic to earliest
Jurassic in age, and accumulated within the Tuscan domain, a paleogeographic region of continental crust that due to the opening
of the Piedmont–Ligurian ocean formed part of the Adria passive-margin. They belong to the metamorphic Verrucano Group and
the non-metamorphic Pseudoverrucano fm. Viewed overall, these Verrucano-type successions appear to manifest five episodes
or pulses of an ongoing continental rifting. With the exception of the first episode that developed entirely within a terrestrial
setting, each one is represented by basal Verrucano-type continental siliciclastics overlain by compositionally mixed marine
deposits, which resulted from four diachronous, post-Middle Triassic transgressions. This suite of tectonic pulses produced
the progressive westward widening (backstepping) of the Tuscan domain in the rifting south-Tuscany area. 相似文献
19.
This paper presents a geological–structural study of some Neogene hinterland basins of the Northern Apennines, located on the Tyrrhenian side of the chain. These basins developed on the already delineated thrust-fold belt from middle–late Tortonian times. Their evolution has been commonly referred to an extensional tectonic regime, related to the opening of the Tyrrhenian Sea. New data have allowed us to hypothesize a different tectonic evolution for the chain, where compressive tectonics plays a major role both in the external and in the hinterland area. In this frame, the hinterland area located west of a major outcropping crustal thrust (Mid-Tuscany Metamorphic Ridge) has been the target of a geological–structural investigation. The field mapping and structural analysis has been focused on the syntectonic sediments of the Radicondoli–Volterra basin as well as on adjoining minor basins. These basins commonly display a synclinal structure and are generally located in between basement culminations, probably corresponding to thrust anticlines. Sediments of the hinterland basins have been affected by compressive deformation and regional unconformities separate stratigraphic units due to the activity of basement thrusts. In the study area, normal faulting either accommodates the thrusting processes or post-dates compressive deformation. A chronology of faulting and a six-stage evolution of this area are presented, providing further insights for the Neogene tectonic evolution of the Northern Apennines. Copyright © 1998 John Wiley & Sons, Ltd. 相似文献
20.
Geochemical maps can provide us with much information on geology, earth surface processes and anthropogenic pressure and are valuable tools for ore prospecting and land management. Stream sediments represent an integral of the various possible sources of sediments upstream from the sampling point therefore there can be multiple signal sources but generally the prevailing signal source is the one related to bedrock geology. Stream sediments collected from active second-order channels including singular geological units, were selected in order to determine the geochemical characteristics of each unit. The aim of this study was to analyze their potential for using them to integrate geological interpretation and produce a geologically-oriented geochemical map. From the 770 samples collected for a regional geochemical mapping program, we selected 149 samples whose catchment basin included only one of the members recognized within the Marnoso-arenacea formation. This middle–upper Miocene (Langhian–Tortonian) turbiditic unit forms the backbone of the Romagna Apennines and has been subdivided into 14 members according to age and lithostratigraphic criteria. The results indicate that there are marked differences in the composition of the members of the Marnoso arenecea formation which indicate the provenance of the sediment and the palaeogeographic evolution of the units. By means of univariate and multivariate statistical analyses (Factor analyzes) two main types of sediment compositions are identified: Tortonian members are characterized by sialic coarse grain-sediments while the Langhian–Serravallian members are richer in carbonate fraction, slightly enriched in a mafic contribution. This study elaborated the geochemical data from a geological point of view by integrating the information available in literature to spatially extend the interpretation based on limited site observation as for petrographic studies. In general, the geochemical map based on a geological unit could be a useful tool for carrying out the geological reconstruction of a complex area. 相似文献
|